Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure
In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The propose...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2011-08-01
|
Series: | Adsorption Science & Technology |
Online Access: | https://doi.org/10.1260/0263-6174.29.8.769 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832544702136582144 |
---|---|
author | Jacek Jagiello Jeffrey Kenvin James P. Olivier Andrew R. Lupini Cristian I. Contescu |
author_facet | Jacek Jagiello Jeffrey Kenvin James P. Olivier Andrew R. Lupini Cristian I. Contescu |
author_sort | Jacek Jagiello |
collection | DOAJ |
description | In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have a finite length L in the x-direction and are infinite in the y-direction. Strip pores are open on both sides in the x-direction; (2) a channel pore, i.e. a strip pore partially closed along one edge by a perpendicularly orientated graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near the corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization, it is necessary to make an assumption about the pore length. In this work, we made this assumption based on high-resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model. |
format | Article |
id | doaj-art-9903bcd8edc440a491ef31babfd5ece4 |
institution | Kabale University |
issn | 0263-6174 2048-4038 |
language | English |
publishDate | 2011-08-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Adsorption Science & Technology |
spelling | doaj-art-9903bcd8edc440a491ef31babfd5ece42025-02-03T10:07:33ZengSAGE PublishingAdsorption Science & Technology0263-61742048-40382011-08-012910.1260/0263-6174.29.8.769Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore StructureJacek Jagiello0Jeffrey Kenvin1James P. Olivier2Andrew R. Lupini3Cristian I. Contescu4 Micromeritics Instrument Corporation, 4356 Communications Drive, Norcross, GA 30093, U.S.A. Micromeritics Instrument Corporation, 4356 Communications Drive, Norcross, GA 30093, U.S.A. Micromeritics Instrument Corporation, 4356 Communications Drive, Norcross, GA 30093, U.S.A. Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A. Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have a finite length L in the x-direction and are infinite in the y-direction. Strip pores are open on both sides in the x-direction; (2) a channel pore, i.e. a strip pore partially closed along one edge by a perpendicularly orientated graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near the corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization, it is necessary to make an assumption about the pore length. In this work, we made this assumption based on high-resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model.https://doi.org/10.1260/0263-6174.29.8.769 |
spellingShingle | Jacek Jagiello Jeffrey Kenvin James P. Olivier Andrew R. Lupini Cristian I. Contescu Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure Adsorption Science & Technology |
title | Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure |
title_full | Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure |
title_fullStr | Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure |
title_full_unstemmed | Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure |
title_short | Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure |
title_sort | using a new finite slit pore model for nldft analysis of carbon pore structure |
url | https://doi.org/10.1260/0263-6174.29.8.769 |
work_keys_str_mv | AT jacekjagiello usinganewfiniteslitporemodelfornldftanalysisofcarbonporestructure AT jeffreykenvin usinganewfiniteslitporemodelfornldftanalysisofcarbonporestructure AT jamespolivier usinganewfiniteslitporemodelfornldftanalysisofcarbonporestructure AT andrewrlupini usinganewfiniteslitporemodelfornldftanalysisofcarbonporestructure AT cristianicontescu usinganewfiniteslitporemodelfornldftanalysisofcarbonporestructure |