Exponential Stability of Stochastic Delayed Neural Networks with Inverse Hölder Activation Functions and Markovian Jump Parameters

The exponential stability issue for a class of stochastic neural networks (SNNs) with Markovian jump parameters, mixed time delays, and α-inverse Hölder activation functions is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Firstly...

Full description

Saved in:
Bibliographic Details
Main Authors: Yingwei Li, Huaiqin Wu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2014/784107
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exponential stability issue for a class of stochastic neural networks (SNNs) with Markovian jump parameters, mixed time delays, and α-inverse Hölder activation functions is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Firstly, based on Brouwer degree properties, the existence and uniqueness of the equilibrium point for SNNs without noise perturbations are proved. Secondly, by applying the Lyapunov-Krasovskii functional approach, stochastic analysis theory, and linear matrix inequality (LMI) technique, new delay-dependent sufficient criteria are achieved in terms of LMIs to ensure the SNNs with noise perturbations to be globally exponentially stable in the mean square. Finally, two simulation examples are provided to demonstrate the validity of the theoretical results.
ISSN:1026-0226
1607-887X