Unboundedness of Solutions of Timoshenko Beam Equations with Damping and Forcing Terms

Timoshenko beam equations with external damping and internal damping terms and forcing terms are investigated, and boundary conditions (end conditions) to be considered are hinged ends (pinned ends), hinged-sliding ends, and sliding ends. Unboundedness of solutions of boundary value problems for Ti...

Full description

Saved in:
Bibliographic Details
Main Authors: Kusuo Kobayashi, Norio Yoshida
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2013/435456
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Timoshenko beam equations with external damping and internal damping terms and forcing terms are investigated, and boundary conditions (end conditions) to be considered are hinged ends (pinned ends), hinged-sliding ends, and sliding ends. Unboundedness of solutions of boundary value problems for Timoshenko beam equations is studied, and it is shown that the magnitude of the displacement of the beam grows up to ∞ as under some assumptions on the forcing term. Our approach is to reduce the multidimensional problems to one-dimensional problems for fourth-order ordinary differential inequalities.
ISSN:1687-9643
1687-9651