Scattering and Doppler Spectral Analysis for a Fast-Moving Target above Time-Varying Lossy Dielectric Sea Surface

A numerical electromagnetic method based on the physical optics with physical optics method (PO-PO) is employed to calculate backscattered returns from a missile-like target above sea surface. Surfaces are time-varying Monte Carlo simulations initialized as realizations of a Pierson–Moskowitz spectr...

Full description

Saved in:
Bibliographic Details
Main Authors: Ke Li, Lixin Guo, Juan Li
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2016/8216309
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A numerical electromagnetic method based on the physical optics with physical optics method (PO-PO) is employed to calculate backscattered returns from a missile-like target above sea surface. Surfaces are time-varying Monte Carlo simulations initialized as realizations of a Pierson–Moskowitz spectrum. The monostatic normalized radar cross section of composite model by the hybrid PO-PO method is calculated and compared with those by the conventional method of moments, as well as the runtime and memory requirements. The results are found to be in good agreement. The runtime shows that the hybrid PO-PO method enables large-scale time-varying Monte Carlo simulations. The numerical simulations of the Doppler spectrum from the fast-moving target above time-varying lossy dielectric sea surface are obtained, and the Doppler spectra of backscattered signals from this model are discussed for different incident angles, speed of flying target, wind speeds, incident frequencies, and target altitudes in detail. Finally, the coupling effects on Doppler spectra are analyzed. All the results are obtained at the incidence of horizontal polarization wave in this study.
ISSN:1687-5869
1687-5877