Paleo-Asian Ocean Ridge Subduction: Evidence from Volcanic Rocks in the Fuyun–Qinghe Area, Southern Margin of the Chinese Altay

The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point for geological research....

Full description

Saved in:
Bibliographic Details
Main Authors: Jixu Liu, Cui Liu, Qing Liu, Zhaohua Luo, Yong Liu, Chenghao Zhou, Xu Guo, Xianghui Yu, Miao Wang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/7/3736
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Chinese Altay is located in the western segment of the Central Asian Orogenic Belt (CAOB) and preserves critical records of the Paleo-Asian Ocean (PAO) Plate evolution during the Paleozoic era. This region also hosts significant mineral deposits, making it a focal point for geological research. In this paper, field investigation, petrology, mineralogy, and petrography studies were conducted on volcanic rocks in the Fuyun–Qinghe area, southern margin of the Chinese Altay, and the paper provided new zircon LA-ICP-MS dating data, Lu-Hf isotope data, and whole-rock geochemical data of the basaltic to andesitic volcanic rocks. Thus, the formation age, petrogenesis, and tectonic setting of these rocks were discussed, which was of great significance to reveal the nature of the PAO Plate. The findings showed that the basaltic andesitic volcanic breccia was formed at 382.9 ± 3.4 Ma, the basalt was 401.7 ± 4.7 Ma, and the andesites were 405.1 ± 5.6 Ma and 404.8 ± 6.7 Ma, which indicated that the above rocks were formed in the Early–Middle Devonian. The volcanic rock assemblages were hawaiite, mugearite, potassic trachybasalt, basaltic andesite, andesite, benmoreite, etc., which contained labeled magmatic rocks such as adakite, sub-boninite, niobium-enriched arc basalt (NEAB), picrite, high-magnesium andesite (HMA), and magnesium andesite (MA). Comprehensive analysis indicated that magma probably mainly originated from three sources: (1) partial melting of the PAO slab, (2) partial melting of the overlying garnet–spinel lherzolite mantle peridotite metasomatized by subducting-related fluids (melts), and (3) a possible input of the asthenosphere. Comparative analysis with modern analogs (e.g., Chile Triple Junction) indicates that ridge subduction of the PAO had existed in the Fuyun–Qinghe area during the Early–Middle Devonian. Based on available evidence, we tentatively named the oceanic plates in this region the central Fuyun–Qinghe Ridge and the Junggar Ocean Plates, separated by the ridge on both sides. Although the ocean had a certain scale, it had entered the climax period of transition from ocean to continent.
ISSN:2076-3417