Logarithmically Complete Monotonicity Properties Relating to the Gamma Function

We prove that the function fα,β(x)=Γβ(x+α)/xαΓ(βx) is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{( α,β):1/α≤β≤1, α≠1}∪{(α,β):0<β≤1,φ1(α,β)≥0,φ2(α,β)≥0} and [fα,β(x)]-1 is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{(α,β):0<α≤1/2,0<β≤1}∪{(α,β):1≤β≤1...

Full description

Saved in:
Bibliographic Details
Main Authors: Tie-Hong Zhao, Yu-Ming Chu, Hua Wang
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/896483
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that the function fα,β(x)=Γβ(x+α)/xαΓ(βx) is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{( α,β):1/α≤β≤1, α≠1}∪{(α,β):0<β≤1,φ1(α,β)≥0,φ2(α,β)≥0} and [fα,β(x)]-1 is strictly logarithmically completely monotonic on (0,∞) if (α,β)∈{(α,β):0<α≤1/2,0<β≤1}∪{(α,β):1≤β≤1/α≤2,α≠1}∪{(α,β):1/2≤α<1,β≥1/(1-α)}, where φ1(α,β)=(α2+α-1)β2+(2α2-3α+1)β-α and φ2(α,β)=(α-1)β2+(2α2-5α+2)β-1.
ISSN:1085-3375
1687-0409