Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions

In this paper, we construct <i>q</i>-ary codes for correcting a burst of at most <i>t</i> deletions, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><...

Full description

Saved in:
Bibliographic Details
Main Authors: Wentu Song, Kui Cai, Tony Q. S. Quek
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/85
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588497313071104
author Wentu Song
Kui Cai
Tony Q. S. Quek
author_facet Wentu Song
Kui Cai
Tony Q. S. Quek
author_sort Wentu Song
collection DOAJ
description In this paper, we construct <i>q</i>-ary codes for correcting a burst of at most <i>t</i> deletions, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>q</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> are arbitrarily fixed positive integers. We consider two scenarios of error correction: the classical error correcting codes, which recover each codeword from one read (channel output), and the reconstruction codes, which allow to recover each codeword from multiple channel reads. For the first scenario, our construction has redundancy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>log</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>log</mi><mi>log</mi><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> bits, encoding complexity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>q</mi><mrow><mn>7</mn><mi>t</mi></mrow></msup><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> and decoding complexity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>. For the reconstruction scenario, our construction can recover the codewords with two reads and has redundancy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>log</mi><mi>log</mi><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> bits. The encoding complexity of this construction is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><msup><mi>q</mi><mrow><mn>7</mn><mi>t</mi></mrow></msup><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup></mfenced></mrow></semantics></math></inline-formula>, and decoding complexity is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><msup><mi>q</mi><mrow><mn>9</mn><mi>t</mi></mrow></msup><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup></mfenced></mrow></semantics></math></inline-formula>. Both of our constructions have lower redundancy than the best known existing works. We also give explicit encoding functions for both constructions that are simpler than previous works.
format Article
id doaj-art-974b12c42742491e9ee9dcba8ac49af3
institution Kabale University
issn 1099-4300
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-974b12c42742491e9ee9dcba8ac49af32025-01-24T13:31:57ZengMDPI AGEntropy1099-43002025-01-012718510.3390/e27010085Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> DeletionsWentu Song0Kui Cai1Tony Q. S. Quek2Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore 487372, SingaporeScience, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore 487372, SingaporeScience, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore 487372, SingaporeIn this paper, we construct <i>q</i>-ary codes for correcting a burst of at most <i>t</i> deletions, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>,</mo><mi>q</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> are arbitrarily fixed positive integers. We consider two scenarios of error correction: the classical error correcting codes, which recover each codeword from one read (channel output), and the reconstruction codes, which allow to recover each codeword from multiple channel reads. For the first scenario, our construction has redundancy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>log</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>log</mi><mi>log</mi><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> bits, encoding complexity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>q</mi><mrow><mn>7</mn><mi>t</mi></mrow></msup><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> and decoding complexity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>. For the reconstruction scenario, our construction can recover the codewords with two reads and has redundancy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>log</mi><mi>log</mi><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> bits. The encoding complexity of this construction is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><msup><mi>q</mi><mrow><mn>7</mn><mi>t</mi></mrow></msup><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup></mfenced></mrow></semantics></math></inline-formula>, and decoding complexity is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><msup><mi>q</mi><mrow><mn>9</mn><mi>t</mi></mrow></msup><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow><mn>3</mn></msup></mfenced></mrow></semantics></math></inline-formula>. Both of our constructions have lower redundancy than the best known existing works. We also give explicit encoding functions for both constructions that are simpler than previous works.https://www.mdpi.com/1099-4300/27/1/85deletion correcting codessequence reconstructionreconstruction codesburst-deletion
spellingShingle Wentu Song
Kui Cai
Tony Q. S. Quek
Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
Entropy
deletion correcting codes
sequence reconstruction
reconstruction codes
burst-deletion
title Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
title_full Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
title_fullStr Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
title_full_unstemmed Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
title_short Some New Constructions of <i>q</i>-ary Codes for Correcting a Burst of at Most <i>t</i> Deletions
title_sort some new constructions of i q i ary codes for correcting a burst of at most i t i deletions
topic deletion correcting codes
sequence reconstruction
reconstruction codes
burst-deletion
url https://www.mdpi.com/1099-4300/27/1/85
work_keys_str_mv AT wentusong somenewconstructionsofiqiarycodesforcorrectingaburstofatmostitideletions
AT kuicai somenewconstructionsofiqiarycodesforcorrectingaburstofatmostitideletions
AT tonyqsquek somenewconstructionsofiqiarycodesforcorrectingaburstofatmostitideletions