Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems

We present novel Gauss integration schemes with radial basis point interpolation method (RPIM). These techniques define new Gauss integration scheme, researching Gauss points (RGD), and reconstructing Gauss domain (RGD), respectively. The developments lead to a curtailment of the elapsed CPU time wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Shi-Chao Yi, Fu-jun Chen, Lin-Quan Yao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/219538
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568013636763648
author Shi-Chao Yi
Fu-jun Chen
Lin-Quan Yao
author_facet Shi-Chao Yi
Fu-jun Chen
Lin-Quan Yao
author_sort Shi-Chao Yi
collection DOAJ
description We present novel Gauss integration schemes with radial basis point interpolation method (RPIM). These techniques define new Gauss integration scheme, researching Gauss points (RGD), and reconstructing Gauss domain (RGD), respectively. The developments lead to a curtailment of the elapsed CPU time without loss of the accuracy. Numerical results show that the schemes reduce the computational time to 25% or less in general.
format Article
id doaj-art-9723dbcf81b942588ab318292e8e6799
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-9723dbcf81b942588ab318292e8e67992025-02-03T00:59:59ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/219538219538Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane ProblemsShi-Chao Yi0Fu-jun Chen1Lin-Quan Yao2School of Mathematical Sciences, Soochow University, Suzhou 215006, ChinaSchool of Mathematical Sciences, Soochow University, Suzhou 215006, ChinaSchool of Urban Rail Transportation, Soochow University, Suzhou 215137, ChinaWe present novel Gauss integration schemes with radial basis point interpolation method (RPIM). These techniques define new Gauss integration scheme, researching Gauss points (RGD), and reconstructing Gauss domain (RGD), respectively. The developments lead to a curtailment of the elapsed CPU time without loss of the accuracy. Numerical results show that the schemes reduce the computational time to 25% or less in general.http://dx.doi.org/10.1155/2014/219538
spellingShingle Shi-Chao Yi
Fu-jun Chen
Lin-Quan Yao
Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
Journal of Applied Mathematics
title Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
title_full Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
title_fullStr Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
title_full_unstemmed Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
title_short Radial Basis Point Interpolation Method with Reordering Gauss Domains for 2D Plane Problems
title_sort radial basis point interpolation method with reordering gauss domains for 2d plane problems
url http://dx.doi.org/10.1155/2014/219538
work_keys_str_mv AT shichaoyi radialbasispointinterpolationmethodwithreorderinggaussdomainsfor2dplaneproblems
AT fujunchen radialbasispointinterpolationmethodwithreorderinggaussdomainsfor2dplaneproblems
AT linquanyao radialbasispointinterpolationmethodwithreorderinggaussdomainsfor2dplaneproblems