Hyperbolic Lattices Derived From Denser Tessellations

The paper&#x2019;s aims are threefold. First, to identify the Fuchsian groups associated with the <inline-formula> <tex-math notation="LaTeX">$\{4\lambda, 4\}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\{...

Full description

Saved in:
Bibliographic Details
Main Authors: Catia Regina de Oliveira Quilles Queiroz, Vandenberg Lopes Vieira, Giuliano Gadioli la Guardia, Clarice Dias de Albuquerque, Anderson Jose de Oliveira, Leandro Bezerra de Lima, Reginaldo Palazzo
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11126112/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper&#x2019;s aims are threefold. First, to identify the Fuchsian groups associated with the <inline-formula> <tex-math notation="LaTeX">$\{4\lambda, 4\}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\{6\lambda, 3\}$ </tex-math></inline-formula> hyperbolic tessellations in quaternion orders, where <inline-formula> <tex-math notation="LaTeX">$\lambda = 3^{n}$ </tex-math></inline-formula>. Second, to provide the bases of the maximal quaternion orders associated with such dense tessellation families. Third, to provide the algebraic structure for constructing hyperbolic lattices or geometrically uniform signal constellations leading to a complete algebraic labeling. These tessellations are relevant for being denser and having inherent mathematical properties, making them a favorite in several classical and quantum applications. However, to the best of our knowledge, a systematic approach and results are needed to put the applications of such relevant mathematical structures in perspective. Hence, the contributions of this paper are related to the presentation of the corresponding Fuchsian groups <inline-formula> <tex-math notation="LaTeX">$\Gamma _{4\lambda }$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\Gamma _{6\lambda }$ </tex-math></inline-formula> derived from quaternion algebras <inline-formula> <tex-math notation="LaTeX">$\mathcal {A}$ </tex-math></inline-formula> over a number field <inline-formula> <tex-math notation="LaTeX">$\mathbb {K}$ </tex-math></inline-formula> whose primitive elements are established in <xref ref-type="theorem" rid="theorem10">Theorems 10</xref> and <xref ref-type="theorem" rid="theorem20">20</xref>, respectively. Consequently, <xref ref-type="theorem" rid="theorem13">Theorems 13</xref> and <xref ref-type="theorem" rid="theorem14">14</xref>, and <xref ref-type="theorem" rid="theorem23">Theorems 23</xref> and <xref ref-type="theorem" rid="theorem24">24</xref> establish the bases of the maximal orders related to the <inline-formula> <tex-math notation="LaTeX">$\{4\lambda, 4\}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\{6\lambda,3\}$ </tex-math></inline-formula> tessellations, respectively, leading to the algebraic labeling to be complete. Therefore, these results provide the algebraic structures for constructing the corresponding hyperbolic lattices.
ISSN:2169-3536