Summability methods based on the Riemann Zeta function
This paper is a study of summability methods that are based on the Riemann Zeta function. A limitation theorem is proved which gives a necessary condition for a sequence x to be zeta summable. A zeta summability matrix Zt associated with a real sequence t is introduced; a necessary and sufficient co...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1988-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171288000067 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is a study of summability methods that are based on the Riemann Zeta function. A limitation theorem is proved which gives a necessary condition for a sequence x to be zeta summable. A zeta summability matrix Zt associated with a real sequence t is introduced; a necessary and sufficient condition on the sequence t such that Zt maps l1 to l1 is established. Results comparing the strength of the zeta method to that of well-known summability methods are also investigated. |
---|---|
ISSN: | 0161-1712 1687-0425 |