Mesoscale field theory for quasicrystals
We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynam...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2024-12-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.6.043285 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion, emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of semicoherent interfaces and dislocation kinematics are given. |
|---|---|
| ISSN: | 2643-1564 |