Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime

This study investigates the singularity structures of lightlike hypersurfaces generated by null Cartan curves in Minkowski spacetime. We construct a hierarchical geometric framework consisting of a lightlike hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&q...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoming Fan, Yongsheng Zhu, Haijing Pan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/4/279
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850183177204662272
author Xiaoming Fan
Yongsheng Zhu
Haijing Pan
author_facet Xiaoming Fan
Yongsheng Zhu
Haijing Pan
author_sort Xiaoming Fan
collection DOAJ
description This study investigates the singularity structures of lightlike hypersurfaces generated by null Cartan curves in Minkowski spacetime. We construct a hierarchical geometric framework consisting of a lightlike hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>H</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, a critical lightlike surface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>S</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, and a degenerate curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>C</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, with dimensions decreasing from 3D to 1D. Using singularity theory, we identify a novel geometric invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> that governs the emergence of specific singularity types, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>W</mi><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>F</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mi>B</mi><mi>F</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula>-cusp. These singularities exhibit increasing degeneracy as the hierarchy progresses, with contact orders between the lightlike hyperplane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><msubsup><mi>S</mi><msub><mi>t</mi><mn>0</mn></msub><mi>L</mi></msubsup></mrow></semantics></math></inline-formula> and the curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">β</mi></semantics></math></inline-formula> systematically intensifying. An explicit example demonstrates the construction of these objects and validates the theoretical results. This work establishes a systematic connection between null Cartan curves, stratified singularities, and contact geometry.
format Article
id doaj-art-965f54b0aa844f3983be51dddf078ed7
institution OA Journals
issn 2075-1680
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-965f54b0aa844f3983be51dddf078ed72025-08-20T02:17:25ZengMDPI AGAxioms2075-16802025-04-0114427910.3390/axioms14040279Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski SpacetimeXiaoming Fan0Yongsheng Zhu1Haijing Pan2School of Teacher Education, Harbin Normal University, Harbin 150025, ChinaSchool of Mathematical Sciences, Harbin Normal University, Harbin 150025, ChinaSchool of Mathematical Sciences, Harbin Normal University, Harbin 150025, ChinaThis study investigates the singularity structures of lightlike hypersurfaces generated by null Cartan curves in Minkowski spacetime. We construct a hierarchical geometric framework consisting of a lightlike hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>H</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, a critical lightlike surface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>S</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, and a degenerate curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>C</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, with dimensions decreasing from 3D to 1D. Using singularity theory, we identify a novel geometric invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> that governs the emergence of specific singularity types, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>W</mi><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>F</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mi>B</mi><mi>F</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula>-cusp. These singularities exhibit increasing degeneracy as the hierarchy progresses, with contact orders between the lightlike hyperplane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><msubsup><mi>S</mi><msub><mi>t</mi><mn>0</mn></msub><mi>L</mi></msubsup></mrow></semantics></math></inline-formula> and the curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">β</mi></semantics></math></inline-formula> systematically intensifying. An explicit example demonstrates the construction of these objects and validates the theoretical results. This work establishes a systematic connection between null Cartan curves, stratified singularities, and contact geometry.https://www.mdpi.com/2075-1680/14/4/279lightlike hypersurfacesnull Cartan curvesMinkowski spacetimesingularitySwallowtail
spellingShingle Xiaoming Fan
Yongsheng Zhu
Haijing Pan
Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
Axioms
lightlike hypersurfaces
null Cartan curves
Minkowski spacetime
singularity
Swallowtail
title Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
title_full Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
title_fullStr Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
title_full_unstemmed Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
title_short Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime
title_sort singularity analysis of lightlike hypersurfaces generated by null cartan curves in minkowski spacetime
topic lightlike hypersurfaces
null Cartan curves
Minkowski spacetime
singularity
Swallowtail
url https://www.mdpi.com/2075-1680/14/4/279
work_keys_str_mv AT xiaomingfan singularityanalysisoflightlikehypersurfacesgeneratedbynullcartancurvesinminkowskispacetime
AT yongshengzhu singularityanalysisoflightlikehypersurfacesgeneratedbynullcartancurvesinminkowskispacetime
AT haijingpan singularityanalysisoflightlikehypersurfacesgeneratedbynullcartancurvesinminkowskispacetime