LSTM vs. Prophet: Achieving Superior Accuracy in Dynamic Electricity Demand Forecasting

Accurate electricity demand forecasting is critical for improving energy efficiency, maintaining grid stability, reducing operational costs, and promoting sustainability. This study presents a novel hybrid forecasting model that integrates Long Short-Term Memory (LSTM) networks and Prophet models, l...

Full description

Saved in:
Bibliographic Details
Main Author: Saleh Albahli
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/278
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate electricity demand forecasting is critical for improving energy efficiency, maintaining grid stability, reducing operational costs, and promoting sustainability. This study presents a novel hybrid forecasting model that integrates Long Short-Term Memory (LSTM) networks and Prophet models, leveraging their complementary strengths through a dynamic weighted ensemble methodology. The LSTM component captures nonlinear dependencies and long-term temporal patterns, while Prophet models seasonal trends and event-driven fluctuations. The hybrid model was evaluated using a comprehensive dataset of hourly electricity consumption from Ontario, Canada, achieving a Root Mean Square Error (RMSE) of 65.34, Mean Absolute Percentage Error (MAPE) of 7.3%, and an R<sup>2</sup> of 0.98. These results demonstrate significant improvements over standalone LSTM, Prophet, and other State-of-the-Art methods, highlighting the hybrid model’s adaptability and superior accuracy. This study underscores the practical implications of the hybrid approach, particularly in energy grid management and resource optimization, setting a new benchmark for time series forecasting in the energy sector.
ISSN:1996-1073