Generalized derivations of order $2$ on multilinear polynomials in prime rings

Let $R$ be a prime ring of characteristic different from $2$ with a right Martindale quotient ring $Q_r$ and an extended centroid $C$. Let $F$ be a non zero generalized derivation of $R$ and $S$ be the set of evaluations of a non-central valued multilinear polynomial $f(x_1,\ldots,x_n)$ over $C$. Le...

Full description

Saved in:
Bibliographic Details
Main Authors: B. Prajapati, C. Gupta
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2022-10-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/38
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $R$ be a prime ring of characteristic different from $2$ with a right Martindale quotient ring $Q_r$ and an extended centroid $C$. Let $F$ be a non zero generalized derivation of $R$ and $S$ be the set of evaluations of a non-central valued multilinear polynomial $f(x_1,\ldots,x_n)$ over $C$. Let $p,q\in R$ be such that $pF^2(u)u+F^2(u)uq=0$ for all $u\in S$. Then for all $x\in R$ one of the followings holds: 1) there exists $a\in Q_r$ such that $F(x)=ax$ or $F(x)=xa$ and $a^2=0$, 2) $p=-q\in C$, 3) $f(x_1,\ldots,x_n)^2$ is central valued on $R$ and there exists $a\in Q_r$ such that $F(x)=ax$ with $pa^2+a^2q=0$.
ISSN:1027-4634
2411-0620