Time-Delayed Feedback Control of a Hydraulic Model Governed by a Diffusive Wave System
This paper is concerned with the feedback flow control of an open-channel hydraulic system modeled by a diffusive wave equation with delay. Firstly, we put forward a feedback flow control subject to the action of a constant time delay. Thereafter, we invoke semigroup theory to substantiate that the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/4986026 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the feedback flow control of an open-channel hydraulic system modeled by a diffusive wave equation with delay. Firstly, we put forward a feedback flow control subject to the action of a constant time delay. Thereafter, we invoke semigroup theory to substantiate that the closed-loop system has a unique solution in an energy space. Subsequently, we deal with the eigenvalue problem of the system. More importantly, exponential decay of solutions of the closed-loop system is derived provided that the feedback gain of the control is bounded. Finally, the theoretical findings are validated via a set of numerical results. |
---|---|
ISSN: | 1076-2787 1099-0526 |