Design of a Novel Fractional Whale Optimization-Enhanced Support Vector Regression (FWOA-SVR) Model for Accurate Solar Energy Forecasting

This study presents a novel Fractional Whale Optimization Algorithm-Enhanced Support Vector Regression (FWOA-SVR) framework for solar energy forecasting, addressing the limitations of traditional SVR in modeling complex relationships within data. The proposed framework incorporates fractional calcul...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdul Wadood, Hani Albalawi, Aadel Mohammed Alatwi, Hafeez Anwar, Tariq Ali
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/35
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a novel Fractional Whale Optimization Algorithm-Enhanced Support Vector Regression (FWOA-SVR) framework for solar energy forecasting, addressing the limitations of traditional SVR in modeling complex relationships within data. The proposed framework incorporates fractional calculus in the Whale Optimization Algorithm (WOA) to improve the balance between exploration and exploitation during hyperparameter tuning. The FWOA-SVR model is comprehensively evaluated against traditional SVR, Long Short-Term Memory (LSTM), and Backpropagation Neural Network (BPNN) models using training, validation, and testing datasets. Experimental results show that FWOA-SVR achieves superior performance with the lowest MSE values (0.036311, 0.03942, and 0.03825), RMSE values (0.19213, 0.19856, and 0.19577), and the highest R<sup>2</sup> values (0.96392, 0.96104, and 0.96192) for training, validation, and testing, respectively. These results highlight the significant improvements of FWOA-SVR in prediction accuracy and efficiency, surpassing benchmark models in capturing complex patterns within the data. The findings highlight the effectiveness of integrating fractional optimization techniques into machine learning frameworks for advancing solar energy forecasting solutions.
ISSN:2504-3110