Uniformly Primal Submodule over Noncommutative Ring

Let R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s∈M−N with sRB⊆N.The set adjN=r∈R|mRr⊆N for some m∈M is uniformly not...

Full description

Saved in:
Bibliographic Details
Main Author: Lamis J. M. Abulebda
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2020/1593253
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832547163716976640
author Lamis J. M. Abulebda
author_facet Lamis J. M. Abulebda
author_sort Lamis J. M. Abulebda
collection DOAJ
description Let R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s∈M−N with sRB⊆N.The set adjN=r∈R|mRr⊆N for some m∈M is uniformly not prime to N.This paper is concerned with the properties of uniformly primal submodules. Also, we generalize the prime avoidance theorem for modules over noncommutative rings to the uniformly primal avoidance theorem for modules.
format Article
id doaj-art-94c8da7440a04861ae57bcc15617799e
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-94c8da7440a04861ae57bcc15617799e2025-02-03T06:45:53ZengWileyJournal of Mathematics2314-46292314-47852020-01-01202010.1155/2020/15932531593253Uniformly Primal Submodule over Noncommutative RingLamis J. M. Abulebda0Department of Mathematics, College of Arts and Sciences, University of Balamand Dubai, Dubai, UAELet R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s∈M−N with sRB⊆N.The set adjN=r∈R|mRr⊆N for some m∈M is uniformly not prime to N.This paper is concerned with the properties of uniformly primal submodules. Also, we generalize the prime avoidance theorem for modules over noncommutative rings to the uniformly primal avoidance theorem for modules.http://dx.doi.org/10.1155/2020/1593253
spellingShingle Lamis J. M. Abulebda
Uniformly Primal Submodule over Noncommutative Ring
Journal of Mathematics
title Uniformly Primal Submodule over Noncommutative Ring
title_full Uniformly Primal Submodule over Noncommutative Ring
title_fullStr Uniformly Primal Submodule over Noncommutative Ring
title_full_unstemmed Uniformly Primal Submodule over Noncommutative Ring
title_short Uniformly Primal Submodule over Noncommutative Ring
title_sort uniformly primal submodule over noncommutative ring
url http://dx.doi.org/10.1155/2020/1593253
work_keys_str_mv AT lamisjmabulebda uniformlyprimalsubmoduleovernoncommutativering