Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks

We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averag...

Full description

Saved in:
Bibliographic Details
Main Authors: Joseph D. Skufca, Erik M. Bollt
Format: Article
Language:English
Published: AIMS Press 2004-06-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2004.1.347
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.
ISSN:1551-0018