Antimicrobial resistance in diverse urban microbiomes: uncovering patterns and predictive markers

Antimicrobial resistance (AMR) is a growing global health concern, driven by urbanization and anthropogenic activities. This study investigated AMR distribution and dynamics across microbiomes from six U.S. cities, focusing on resistomes, viromes, and mobile genetic elements (MGEs). Using metagenomi...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodolfo Brizola Toscan, Wojciech Lesiński, Piotr Stomma, Balakrishnan Subramanian, Paweł P. Łabaj, Witold R. Rudnicki
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Genetics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fgene.2025.1460508/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimicrobial resistance (AMR) is a growing global health concern, driven by urbanization and anthropogenic activities. This study investigated AMR distribution and dynamics across microbiomes from six U.S. cities, focusing on resistomes, viromes, and mobile genetic elements (MGEs). Using metagenomic data from the CAMDA 2023 challenge, we applied tools such as AMR++, Bowtie, AMRFinderPlus, and RGI for resistome profiling, along with clustering, normalization, and machine learning techniques to identify predictive markers. AMR++ and Bowtie outperformed other tools in detecting diverse AMR markers, with binary normalization improving classification accuracy. MGEs were found to play a critical role in AMR dissemination, with 394 genes shared across all cities. Removal of MGE-associated AMR genes altered resistome profiles and reduced model performance. The findings reveal a heterogeneous AMR landscape in urban microbiomes, particularly in New York City, which showed the highest resistome diversity. These results underscore the importance of MGEs in AMR profiling and provide valuable insights for designing targeted strategies to address AMR in urban settings.
ISSN:1664-8021