A data-driven latent variable approach to validating the research domain criteria framework

Abstract Despite the widespread use of the Research Domain Criteria (RDoC) framework in psychiatry and neuroscience, recent studies suggest that the RDoC is insufficiently specific or excessively broad relative to the underlying brain circuitry it seeks to elucidate. To address these concerns, we em...

Full description

Saved in:
Bibliographic Details
Main Authors: S. K. L. Quah, B. Jo, C. Geniesse, L. Q. Uddin, J. A. Mumford, D. M. Barch, D. A. Fair, I. H. Gotlib, R. A. Poldrack, M. Saggar
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-55831-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594559838715904
author S. K. L. Quah
B. Jo
C. Geniesse
L. Q. Uddin
J. A. Mumford
D. M. Barch
D. A. Fair
I. H. Gotlib
R. A. Poldrack
M. Saggar
author_facet S. K. L. Quah
B. Jo
C. Geniesse
L. Q. Uddin
J. A. Mumford
D. M. Barch
D. A. Fair
I. H. Gotlib
R. A. Poldrack
M. Saggar
author_sort S. K. L. Quah
collection DOAJ
description Abstract Despite the widespread use of the Research Domain Criteria (RDoC) framework in psychiatry and neuroscience, recent studies suggest that the RDoC is insufficiently specific or excessively broad relative to the underlying brain circuitry it seeks to elucidate. To address these concerns, we employ a latent variable approach using bifactor analysis. We examine 84 whole-brain task-based fMRI (tfMRI) activation maps from 19 studies with 6192 participants. A curated subset of 37 maps with a balanced representation of RDoC domains constitute the training set, and the remaining held-out maps form the internal validation set. External validation is conducted using 36 peak coordinate activation maps from Neurosynth, using terms of RDoC constructs as seeds for topic meta-analysis. Here, we show that a bifactor model incorporating a task-general domain and splitting the cognitive systems domain better fits the examined corpus of tfMRI data than the current RDoC framework. We also identify the domain of arousal and regulatory systems as underrepresented. Our data-driven validation supports revising the RDoC framework to reflect underlying brain circuitry more accurately.
format Article
id doaj-art-9470eb820ba845fd8349df95ad2d5482
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-9470eb820ba845fd8349df95ad2d54822025-01-19T12:32:05ZengNature PortfolioNature Communications2041-17232025-01-0116111110.1038/s41467-025-55831-zA data-driven latent variable approach to validating the research domain criteria frameworkS. K. L. Quah0B. Jo1C. Geniesse2L. Q. Uddin3J. A. Mumford4D. M. Barch5D. A. Fair6I. H. Gotlib7R. A. Poldrack8M. Saggar9Department of Psychiatry & Behavioral Sciences, School of Medicine, Stanford UniversityDepartment of Psychiatry & Behavioral Sciences, School of Medicine, Stanford UniversityMachine Learning & Analytics Group, Lawrence Berkeley National LaboratoryDepartment of Psychiatry and Biobehavioral Sciences, University of California Los AngelesDepartment of Psychology, Stanford UniversityDepartments of Psychological & Brain Sciences, Washington University in St. LouisMasonic Institute for the Developing Brain, University of MinnesotaDepartment of Psychology, Stanford UniversityDepartment of Psychology, Stanford UniversityDepartment of Psychiatry & Behavioral Sciences, School of Medicine, Stanford UniversityAbstract Despite the widespread use of the Research Domain Criteria (RDoC) framework in psychiatry and neuroscience, recent studies suggest that the RDoC is insufficiently specific or excessively broad relative to the underlying brain circuitry it seeks to elucidate. To address these concerns, we employ a latent variable approach using bifactor analysis. We examine 84 whole-brain task-based fMRI (tfMRI) activation maps from 19 studies with 6192 participants. A curated subset of 37 maps with a balanced representation of RDoC domains constitute the training set, and the remaining held-out maps form the internal validation set. External validation is conducted using 36 peak coordinate activation maps from Neurosynth, using terms of RDoC constructs as seeds for topic meta-analysis. Here, we show that a bifactor model incorporating a task-general domain and splitting the cognitive systems domain better fits the examined corpus of tfMRI data than the current RDoC framework. We also identify the domain of arousal and regulatory systems as underrepresented. Our data-driven validation supports revising the RDoC framework to reflect underlying brain circuitry more accurately.https://doi.org/10.1038/s41467-025-55831-z
spellingShingle S. K. L. Quah
B. Jo
C. Geniesse
L. Q. Uddin
J. A. Mumford
D. M. Barch
D. A. Fair
I. H. Gotlib
R. A. Poldrack
M. Saggar
A data-driven latent variable approach to validating the research domain criteria framework
Nature Communications
title A data-driven latent variable approach to validating the research domain criteria framework
title_full A data-driven latent variable approach to validating the research domain criteria framework
title_fullStr A data-driven latent variable approach to validating the research domain criteria framework
title_full_unstemmed A data-driven latent variable approach to validating the research domain criteria framework
title_short A data-driven latent variable approach to validating the research domain criteria framework
title_sort data driven latent variable approach to validating the research domain criteria framework
url https://doi.org/10.1038/s41467-025-55831-z
work_keys_str_mv AT sklquah adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT bjo adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT cgeniesse adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT lquddin adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT jamumford adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT dmbarch adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT dafair adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT ihgotlib adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT rapoldrack adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT msaggar adatadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT sklquah datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT bjo datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT cgeniesse datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT lquddin datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT jamumford datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT dmbarch datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT dafair datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT ihgotlib datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT rapoldrack datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework
AT msaggar datadrivenlatentvariableapproachtovalidatingtheresearchdomaincriteriaframework