Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range

This paper presents the first hybrid-integration assembly of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) and a beam-steering leaky wave antenna (LWA) using an ultra-precise deposition (UPD) printed coplanar waveguide (CPW) interconnect operating in a broad sub- THz range of...

Full description

Saved in:
Bibliographic Details
Main Authors: Georg Gramlich, Elizabeth Bekker, Luca Valenziano, Joel Dittmer, Martin Roemhild, Holger Baur, Fabian Thome, Axel Tessmann, Michael Kuri, Tom Neerfeld, Andreas Stohr, Sebastian Randel, Christian Koos, Norbert Fruehauf, Thomas Zwick, Akanksha Bhutani
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Antennas and Propagation
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10926903/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849688600008982528
author Georg Gramlich
Elizabeth Bekker
Luca Valenziano
Joel Dittmer
Martin Roemhild
Holger Baur
Fabian Thome
Axel Tessmann
Michael Kuri
Tom Neerfeld
Andreas Stohr
Sebastian Randel
Christian Koos
Norbert Fruehauf
Thomas Zwick
Akanksha Bhutani
author_facet Georg Gramlich
Elizabeth Bekker
Luca Valenziano
Joel Dittmer
Martin Roemhild
Holger Baur
Fabian Thome
Axel Tessmann
Michael Kuri
Tom Neerfeld
Andreas Stohr
Sebastian Randel
Christian Koos
Norbert Fruehauf
Thomas Zwick
Akanksha Bhutani
author_sort Georg Gramlich
collection DOAJ
description This paper presents the first hybrid-integration assembly of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) and a beam-steering leaky wave antenna (LWA) using an ultra-precise deposition (UPD) printed coplanar waveguide (CPW) interconnect operating in a broad sub- THz range of 220 GHz to 325 GHz. The hybrid assembly uses an InGaAs PA with a saturated output power of up to 14.5 dBm and an InP LWA with a peak antenna gain of up to 13.5 dBi and a beam-steering range from -60&#x00B0; to 35&#x00B0;. The hybrid assembly employs a submount that compensates for the height difference of <inline-formula> <tex-math notation="LaTeX">$\approx 300 \mu \mathrm{m}$ </tex-math></inline-formula> between the PA MMIC and LWA substrates. The PA MMIC and LWA are positioned at an edge-to-edge distance of just <inline-formula> <tex-math notation="LaTeX">$11 \mu \mathrm{m}$ </tex-math></inline-formula> on the submount using a die bonder with sub-micrometer accuracy. The small gap between the PA MMIC and LWA is filled with a polymer that provides a stable dielectric constant in the target sub-THz range. The UPD-printed CPW interconnect is optimized to maintain a characteristic impedance of <inline-formula> <tex-math notation="LaTeX">$50 \Omega$ </tex-math></inline-formula> by analyzing the dielectric properties and thickness of the various materials on which the printing is performed. Moreover, the surface topology is measured using a white light interferometer, to enable fully conformal printing. The electromagnetic simulation results of the CPW interconnect show an insertion loss of 1.1 dB to 1.7 dB, which includes the RF pads of the PA MMIC, LWA, and the short segments of CPW designed on the PA MMIC and LWA substrates. A separate UPD-printed CPW test assembly is manufactured on a single polymer substrate, and custom through-reflect-line calibration standards are printed on the same substrate to experimentally validate the insertion loss of a UPD-printed CPW in the 220 GHz to 325 GHz range. A probe-based measurement setup is used to characterize the hybrid assembly. The hybrid assembly achieves a reflection coefficient of less than -10 dB and a peak gain of up to 26 dBi across the sub- THz range. The beamsteering functionality of the hybrid assembly is successfully validated only in the forward quadrant due to measurement restrictions in the backward quadrant. In the forward quadrant, the measured beam-steering angle of the hybrid assembly varies from 0&#x00B0; to 37&#x00B0;, which is in good agreement with the standalone LWA.
format Article
id doaj-art-942a33ddc9a34e0f9d10c86c46f74e87
institution DOAJ
issn 2637-6431
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Antennas and Propagation
spelling doaj-art-942a33ddc9a34e0f9d10c86c46f74e872025-08-20T03:21:55ZengIEEEIEEE Open Journal of Antennas and Propagation2637-64312025-01-016383785310.1109/OJAP.2025.355135010926903Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz RangeGeorg Gramlich0https://orcid.org/0009-0005-9731-3648Elizabeth Bekker1https://orcid.org/0000-0002-9896-3977Luca Valenziano2https://orcid.org/0009-0006-6091-7832Joel Dittmer3https://orcid.org/0009-0008-2813-1914Martin Roemhild4https://orcid.org/0000-0002-9771-7694Holger Baur5Fabian Thome6https://orcid.org/0000-0002-1902-4323Axel Tessmann7https://orcid.org/0000-0002-0046-4417Michael Kuri8Tom Neerfeld9https://orcid.org/0009-0001-2963-3579Andreas Stohr10https://orcid.org/0000-0003-1036-2120Sebastian Randel11Christian Koos12https://orcid.org/0000-0003-2690-0691Norbert Fruehauf13https://orcid.org/0009-0006-8118-8990Thomas Zwick14https://orcid.org/0000-0002-1268-0766Akanksha Bhutani15https://orcid.org/0000-0002-1199-2688Institute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute for Large Area Microelectronics, University of Stuttgart, Stuttgart, GermanyInstitute for Large Area Microelectronics, University of Stuttgart, Stuttgart, GermanyFraunhofer Institute for Applied Solid State Physics IAF, Freiburg im Breisgau, GermanyFraunhofer Institute for Applied Solid State Physics IAF, Freiburg im Breisgau, GermanyFraunhofer Institute for Applied Solid State Physics IAF, Freiburg im Breisgau, GermanyDepartment of Optoelectronics, University of Duisburg-Essen, Duisburg, GermanyDepartment of Optoelectronics, University of Duisburg-Essen, Duisburg, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute for Large Area Microelectronics, University of Stuttgart, Stuttgart, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute of Radio Frequency Engineering and Electronics, Karlsruhe Institute of Technology, Karlsruhe, GermanyThis paper presents the first hybrid-integration assembly of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) and a beam-steering leaky wave antenna (LWA) using an ultra-precise deposition (UPD) printed coplanar waveguide (CPW) interconnect operating in a broad sub- THz range of 220 GHz to 325 GHz. The hybrid assembly uses an InGaAs PA with a saturated output power of up to 14.5 dBm and an InP LWA with a peak antenna gain of up to 13.5 dBi and a beam-steering range from -60&#x00B0; to 35&#x00B0;. The hybrid assembly employs a submount that compensates for the height difference of <inline-formula> <tex-math notation="LaTeX">$\approx 300 \mu \mathrm{m}$ </tex-math></inline-formula> between the PA MMIC and LWA substrates. The PA MMIC and LWA are positioned at an edge-to-edge distance of just <inline-formula> <tex-math notation="LaTeX">$11 \mu \mathrm{m}$ </tex-math></inline-formula> on the submount using a die bonder with sub-micrometer accuracy. The small gap between the PA MMIC and LWA is filled with a polymer that provides a stable dielectric constant in the target sub-THz range. The UPD-printed CPW interconnect is optimized to maintain a characteristic impedance of <inline-formula> <tex-math notation="LaTeX">$50 \Omega$ </tex-math></inline-formula> by analyzing the dielectric properties and thickness of the various materials on which the printing is performed. Moreover, the surface topology is measured using a white light interferometer, to enable fully conformal printing. The electromagnetic simulation results of the CPW interconnect show an insertion loss of 1.1 dB to 1.7 dB, which includes the RF pads of the PA MMIC, LWA, and the short segments of CPW designed on the PA MMIC and LWA substrates. A separate UPD-printed CPW test assembly is manufactured on a single polymer substrate, and custom through-reflect-line calibration standards are printed on the same substrate to experimentally validate the insertion loss of a UPD-printed CPW in the 220 GHz to 325 GHz range. A probe-based measurement setup is used to characterize the hybrid assembly. The hybrid assembly achieves a reflection coefficient of less than -10 dB and a peak gain of up to 26 dBi across the sub- THz range. The beamsteering functionality of the hybrid assembly is successfully validated only in the forward quadrant due to measurement restrictions in the backward quadrant. In the forward quadrant, the measured beam-steering angle of the hybrid assembly varies from 0&#x00B0; to 37&#x00B0;, which is in good agreement with the standalone LWA.https://ieeexplore.ieee.org/document/10926903/Beam-steeringleaky-waveMMICpower amplifierUPD printingsub-THz antenna
spellingShingle Georg Gramlich
Elizabeth Bekker
Luca Valenziano
Joel Dittmer
Martin Roemhild
Holger Baur
Fabian Thome
Axel Tessmann
Michael Kuri
Tom Neerfeld
Andreas Stohr
Sebastian Randel
Christian Koos
Norbert Fruehauf
Thomas Zwick
Akanksha Bhutani
Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
IEEE Open Journal of Antennas and Propagation
Beam-steering
leaky-wave
MMIC
power amplifier
UPD printing
sub-THz antenna
title Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
title_full Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
title_fullStr Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
title_full_unstemmed Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
title_short Hybrid Integration of a Beam-Steering Leaky-Wave Antenna and Power Amplifier MMIC Using UPD Printing in 220 to 325 GHz Range
title_sort hybrid integration of a beam steering leaky wave antenna and power amplifier mmic using upd printing in 220 to 325 ghz range
topic Beam-steering
leaky-wave
MMIC
power amplifier
UPD printing
sub-THz antenna
url https://ieeexplore.ieee.org/document/10926903/
work_keys_str_mv AT georggramlich hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT elizabethbekker hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT lucavalenziano hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT joeldittmer hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT martinroemhild hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT holgerbaur hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT fabianthome hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT axeltessmann hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT michaelkuri hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT tomneerfeld hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT andreasstohr hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT sebastianrandel hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT christiankoos hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT norbertfruehauf hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT thomaszwick hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange
AT akankshabhutani hybridintegrationofabeamsteeringleakywaveantennaandpoweramplifiermmicusingupdprintingin220to325ghzrange