The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem

We obtain new result of the existence of positive solutions of a class of singular impulse periodic boundary value problem via a nonlinear alternative principle of Leray-Schauder. We do not require the monotonicity of functions in paper (Zhang and Wang, 2003). An example is also given to illustrate...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaocai Hao, Tanggui Chen
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2011/808175
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562683537260544
author Zhaocai Hao
Tanggui Chen
author_facet Zhaocai Hao
Tanggui Chen
author_sort Zhaocai Hao
collection DOAJ
description We obtain new result of the existence of positive solutions of a class of singular impulse periodic boundary value problem via a nonlinear alternative principle of Leray-Schauder. We do not require the monotonicity of functions in paper (Zhang and Wang, 2003). An example is also given to illustrate our result.
format Article
id doaj-art-93a9eba27420402d92bf8edc86c8c72c
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-93a9eba27420402d92bf8edc86c8c72c2025-02-03T01:22:08ZengWileyInternational Journal of Differential Equations1687-96431687-96512011-01-01201110.1155/2011/808175808175The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value ProblemZhaocai Hao0Tanggui Chen1Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, ChinaDepartment of Mathematics, Qufu Normal University, Qufu, Shandong 273165, ChinaWe obtain new result of the existence of positive solutions of a class of singular impulse periodic boundary value problem via a nonlinear alternative principle of Leray-Schauder. We do not require the monotonicity of functions in paper (Zhang and Wang, 2003). An example is also given to illustrate our result.http://dx.doi.org/10.1155/2011/808175
spellingShingle Zhaocai Hao
Tanggui Chen
The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
International Journal of Differential Equations
title The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
title_full The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
title_fullStr The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
title_full_unstemmed The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
title_short The Existence of Positive Solutions for Singular Impulse Periodic Boundary Value Problem
title_sort existence of positive solutions for singular impulse periodic boundary value problem
url http://dx.doi.org/10.1155/2011/808175
work_keys_str_mv AT zhaocaihao theexistenceofpositivesolutionsforsingularimpulseperiodicboundaryvalueproblem
AT tangguichen theexistenceofpositivesolutionsforsingularimpulseperiodicboundaryvalueproblem
AT zhaocaihao existenceofpositivesolutionsforsingularimpulseperiodicboundaryvalueproblem
AT tangguichen existenceofpositivesolutionsforsingularimpulseperiodicboundaryvalueproblem