Shift Unitary Transform for Constructing Two-Dimensional Wavelet Filters
Due to the difficulty for constructing two-dimensional wavelet filters, the commonly used wavelet filters are tensor-product of one-dimensional wavelet filters. In some applications, more perfect reconstruction filters should be provided. In this paper, we introduce a transformation which is referre...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2011/272801 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the difficulty for constructing two-dimensional wavelet filters, the commonly used wavelet filters are tensor-product of one-dimensional wavelet filters. In some applications, more perfect reconstruction filters should be provided. In this paper, we introduce a transformation which is referred to as Shift Unitary Transform (SUT) of Conjugate Quadrature Filter (CQF). In terms of this transformation, we propose a parametrization method for constructing two-dimensional orthogonal wavelet filters. It is proved that tensor-product wavelet filters are only special cases of this parametrization method. To show this, we introduce the SUT of one-dimensional CQF and present a complete parametrization of one-dimensional wavelet system. As a result, more ways are provided to randomly generate two-dimensional perfect reconstruction filters. |
---|---|
ISSN: | 1110-757X 1687-0042 |