A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams

This study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multis...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariela C. Bravo-Sánchez, Luis M. Palacios-Pineda, José L. Gómez-Color, Oscar Martínez-Romero, Imperio A. Perales-Martínez, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/32
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588427654070272
author Mariela C. Bravo-Sánchez
Luis M. Palacios-Pineda
José L. Gómez-Color
Oscar Martínez-Romero
Imperio A. Perales-Martínez
Daniel Olvera-Trejo
Jorge A. Estrada-Díaz
Alex Elías-Zúñiga
author_facet Mariela C. Bravo-Sánchez
Luis M. Palacios-Pineda
José L. Gómez-Color
Oscar Martínez-Romero
Imperio A. Perales-Martínez
Daniel Olvera-Trejo
Jorge A. Estrada-Díaz
Alex Elías-Zúñiga
author_sort Mariela C. Bravo-Sánchez
collection DOAJ
description This study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multiscale nature of the dynamic response behavior of two low-density foams to sustain impact loads, fractional differential equations of motion are used to qualitatively and quantitatively describe the dynamic response behavior, assuming restoring forces for each foam characterized, respectively, by a polynomial of heptic degree and by a trigonometric tangential function. A two-scale transform is employed to solve the mathematical model and predict the material’s behavior under impact loads, accounting for the fractal structure of the material’s molecular configuration. To assess the accuracy of the mathematical model, we performed impact tests considering eight dropping heights and two plate weights. We found good predictions from the mathematical models compared to experimental data when the fractal derivatives were between 1.86 and 1.9, depending on the cushioning material used. The accuracy of the theoretical predictions achieved using fractal calculus elucidates how to predict multiscale phenomena associated with foam heterogeneity across space, density, and average pore size, which influence the foam chain’s molecular motion during impact loading conditions.
format Article
id doaj-art-93291900cece48da9b7dec7b1a13dacf
institution Kabale University
issn 2504-3110
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-93291900cece48da9b7dec7b1a13dacf2025-01-24T13:33:26ZengMDPI AGFractal and Fractional2504-31102025-01-01913210.3390/fractalfract9010032A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer FoamsMariela C. Bravo-Sánchez0Luis M. Palacios-Pineda1José L. Gómez-Color2Oscar Martínez-Romero3Imperio A. Perales-Martínez4Daniel Olvera-Trejo5Jorge A. Estrada-Díaz6Alex Elías-Zúñiga7División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Carr. México-Pachuca Km 87.5, Pachuca 42080, Hidalgo, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Carr. México-Pachuca Km 87.5, Pachuca 42080, Hidalgo, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Carr. México-Pachuca Km 87.5, Pachuca 42080, Hidalgo, MexicoTecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnologico, Monterrey 64700, Nuevo Leon, MexicoTecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnologico, Monterrey 64700, Nuevo Leon, MexicoTecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnologico, Monterrey 64700, Nuevo Leon, MexicoTecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnologico, Monterrey 64700, Nuevo Leon, MexicoTecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnologico, Monterrey 64700, Nuevo Leon, MexicoThis study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multiscale nature of the dynamic response behavior of two low-density foams to sustain impact loads, fractional differential equations of motion are used to qualitatively and quantitatively describe the dynamic response behavior, assuming restoring forces for each foam characterized, respectively, by a polynomial of heptic degree and by a trigonometric tangential function. A two-scale transform is employed to solve the mathematical model and predict the material’s behavior under impact loads, accounting for the fractal structure of the material’s molecular configuration. To assess the accuracy of the mathematical model, we performed impact tests considering eight dropping heights and two plate weights. We found good predictions from the mathematical models compared to experimental data when the fractal derivatives were between 1.86 and 1.9, depending on the cushioning material used. The accuracy of the theoretical predictions achieved using fractal calculus elucidates how to predict multiscale phenomena associated with foam heterogeneity across space, density, and average pore size, which influence the foam chain’s molecular motion during impact loading conditions.https://www.mdpi.com/2504-3110/9/1/32fractal cushioning packaging modelHe’s formulationtwo-scale dimension transformcushioning performance curvepackaging of fragile productsporous materials
spellingShingle Mariela C. Bravo-Sánchez
Luis M. Palacios-Pineda
José L. Gómez-Color
Oscar Martínez-Romero
Imperio A. Perales-Martínez
Daniel Olvera-Trejo
Jorge A. Estrada-Díaz
Alex Elías-Zúñiga
A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
Fractal and Fractional
fractal cushioning packaging model
He’s formulation
two-scale dimension transform
cushioning performance curve
packaging of fragile products
porous materials
title A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
title_full A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
title_fullStr A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
title_full_unstemmed A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
title_short A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
title_sort multiscale fractal approach for determining cushioning curves of low density polymer foams
topic fractal cushioning packaging model
He’s formulation
two-scale dimension transform
cushioning performance curve
packaging of fragile products
porous materials
url https://www.mdpi.com/2504-3110/9/1/32
work_keys_str_mv AT marielacbravosanchez amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT luismpalaciospineda amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT joselgomezcolor amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT oscarmartinezromero amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT imperioaperalesmartinez amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT danielolveratrejo amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT jorgeaestradadiaz amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT alexeliaszuniga amultiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT marielacbravosanchez multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT luismpalaciospineda multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT joselgomezcolor multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT oscarmartinezromero multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT imperioaperalesmartinez multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT danielolveratrejo multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT jorgeaestradadiaz multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams
AT alexeliaszuniga multiscalefractalapproachfordeterminingcushioningcurvesoflowdensitypolymerfoams