Modelling of Dual-Junction Solar Cells including Tunnel Junction

Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel di...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdelaziz Amine, Yamina Mir, Mimoun Zazoui
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2013/546362
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V) characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.
ISSN:1687-8108
1687-8124