Virtual MOS Sensor Array Design for Ammonia Monitoring in Pig Barns

Animal welfare in barns is strongly influenced by air quality, with gaseous emissions like ammonia posing significant respiratory health risks. However, current state-of-the-art ammonia monitoring systems are labor-intensive and expensive. Metal Oxide Semiconductor (MOS) sensors offer a promising al...

Full description

Saved in:
Bibliographic Details
Main Authors: Raphael Parsiegel, Miguel Budag Becker, Pieter Try, Marion Gebhard
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2617
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Animal welfare in barns is strongly influenced by air quality, with gaseous emissions like ammonia posing significant respiratory health risks. However, current state-of-the-art ammonia monitoring systems are labor-intensive and expensive. Metal Oxide Semiconductor (MOS) sensors offer a promising alternative due to their compatibility with sensor networks, enabling high-resolution ammonia monitoring across spatial and temporal scales. While MOS sensors exhibit high sensitivity to various volatile compounds, temperature-cycled operation is commonly employed to enhance selectivity, effectively creating virtual sensor arrays. This study aims to improve ammonia detection by designing a virtual sensor array through a cyclic data-driven approach, integrating machine learning with solid-state sensor modeling. The results of a two-week dataset with measurements of four different pig barns demonstrate ammonia sensing with a sampling rate of about 2/min and a range of 1–30 ppm. The method is robust and exhibits a 10% increase in normalized RMSE when comparing testing results of an unseen sensor module with results of the training dataset. A filter membrane boosts accuracy and prevents data loss due to contamination, such as flyspecks. Overall, the used MOS sensor BME688 is effective and economical for widespread continuous ammonia monitoring and localization of ammonia sources in pig barns.
ISSN:1424-8220