Model-Based Graph Reinforcement Learning for Inductive Traffic Signal Control

We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cycli...

Full description

Saved in:
Bibliographic Details
Main Authors: Francois-Xavier Devailly, Denis Larocque, Laurent Charlin
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Intelligent Transportation Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10470423/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce MuJAM, an adaptive traffic signal control method which leverages model-based reinforcement learning to 1) extend recent generalization efforts (to road network architectures and traffic distributions) further by allowing a generalization to the controllers’ constraints (cyclic and acyclic policies), 2) improve performance and data efficiency over related model-free approaches, and 3) enable explicit coordination at scale for the first time. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as a recent transferable approach.
ISSN:2687-7813