Analytic Approximate Solution for Falkner-Skan Equation
This paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/617453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561859358621696 |
---|---|
author | Vasile Marinca Remus-Daniel Ene Bogdan Marinca |
author_facet | Vasile Marinca Remus-Daniel Ene Bogdan Marinca |
author_sort | Vasile Marinca |
collection | DOAJ |
description | This paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. The obtained results reveal that this procedure is very effective, simple, and accurate. A very good agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration. |
format | Article |
id | doaj-art-92cebabdd1d6416ba83c74493818071b |
institution | Kabale University |
issn | 2356-6140 1537-744X |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | The Scientific World Journal |
spelling | doaj-art-92cebabdd1d6416ba83c74493818071b2025-02-03T01:24:04ZengWileyThe Scientific World Journal2356-61401537-744X2014-01-01201410.1155/2014/617453617453Analytic Approximate Solution for Falkner-Skan EquationVasile Marinca0Remus-Daniel Ene1Bogdan Marinca2Department of Mechanics and Vibration, Politehnica University of Timișoara, 300222 Timișoara, RomaniaDepartment of Mathematics, Politehnica University of Timișoara, 300006 Timișoara, RomaniaDepartment of Applied Electronics, Politehnica University of Timișoara, 300223 Timișoara, RomaniaThis paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. The obtained results reveal that this procedure is very effective, simple, and accurate. A very good agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.http://dx.doi.org/10.1155/2014/617453 |
spellingShingle | Vasile Marinca Remus-Daniel Ene Bogdan Marinca Analytic Approximate Solution for Falkner-Skan Equation The Scientific World Journal |
title | Analytic Approximate Solution for Falkner-Skan Equation |
title_full | Analytic Approximate Solution for Falkner-Skan Equation |
title_fullStr | Analytic Approximate Solution for Falkner-Skan Equation |
title_full_unstemmed | Analytic Approximate Solution for Falkner-Skan Equation |
title_short | Analytic Approximate Solution for Falkner-Skan Equation |
title_sort | analytic approximate solution for falkner skan equation |
url | http://dx.doi.org/10.1155/2014/617453 |
work_keys_str_mv | AT vasilemarinca analyticapproximatesolutionforfalknerskanequation AT remusdanielene analyticapproximatesolutionforfalknerskanequation AT bogdanmarinca analyticapproximatesolutionforfalknerskanequation |