The New Scramble for Faure Sequence Based on Irrational Numbers

This article intends to review quasirandom sequences, especially the Faure sequence to introduce a new version of scrambled of this sequence based on irrational numbers, as follows to prove the success of this version of the random number sequence generator and use it in future calculations. We intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Mogharrabi O., Behrooz Fathi V., M. H. Behzadi, R. Farnoosh
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2021/6696895
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article intends to review quasirandom sequences, especially the Faure sequence to introduce a new version of scrambled of this sequence based on irrational numbers, as follows to prove the success of this version of the random number sequence generator and use it in future calculations. We introduce this scramble of the Faure sequence and show the performance of this sequence in employed numerical codes to obtain successful test integrals. Here, we define a scrambling matrix so that its elements are irrational numbers. In addition, a new form of radical inverse function has been defined, which by combining it with our new matrix, we will have a sequence that not only has a better close uniform distribution than the previous sequences but also is a more accurate and efficient tool in estimating test integrals.
ISSN:1687-9120
1687-9139