Modeling of Cavitating Flow through Waterjet Propulsors
A computational-fluid-dynamics-based modeling effort to capture flow through an axial flow waterjet propulsor is presented. The effort covered the waterjet flow over a wide range of flow coefficients and into cavitation-driven breakdown. The computations are presented in cavitation at two values of...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Rotating Machinery |
Online Access: | http://dx.doi.org/10.1155/2012/716392 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A computational-fluid-dynamics-based modeling effort to capture flow through an axial flow waterjet propulsor is presented. The effort covered the waterjet flow over a wide range of flow coefficients and into cavitation-driven breakdown. The computations are presented in cavitation at two values of flow coefficient through a series of decreasing operating inlet total pressure. The computational results are compared to experimental measurements. Suction-surface and tip-gap cavitation patterns are presented and compared to experimental photographs. Presented computational solutions are blade-passage steady and periodic. The computational results apply a powering iteration methodology to facilitate coupling of rotor, stator, and inflow and outflow ducting. |
---|---|
ISSN: | 1023-621X 1542-3034 |