Improving Medical Image Quality Using a Super-Resolution Technique with Attention Mechanism

Image quality plays a critical role in medical image analysis, significantly impacting diagnostic outcomes. Sharp and detailed images are essential for accurate diagnoses, but acquiring high-resolution medical images often demands sophisticated and costly equipment. To address this challenge, this s...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong Yun Lee, Jang Yeop Kim, Soo Young Cho
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/867
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image quality plays a critical role in medical image analysis, significantly impacting diagnostic outcomes. Sharp and detailed images are essential for accurate diagnoses, but acquiring high-resolution medical images often demands sophisticated and costly equipment. To address this challenge, this study proposes a convolutional neural network (CNN)-based super-resolution architecture, utilizing a melanoma dataset to enhance image resolution through deep learning techniques. The proposed model incorporates a convolutional self-attention block that combines channel and spatial attention to emphasize important image features. Channel attention uses global average pooling and fully connected layers to enhance high-frequency features within channels. Meanwhile, spatial attention applies a single-channel convolution to emphasize high-frequency features in the spatial domain. By integrating various attention blocks, feature extraction is optimized and further expanded through subpixel convolution to produce high-quality super-resolution images. The model uses L1 loss to generate realistic and smooth outputs, outperforming existing deep learning methods in capturing contours and textures. Evaluations with the ISIC 2020 dataset—containing 33126 training and 10982 test images for skin lesion analysis—showed a 1–2% improvement in peak signal-to-noise ratio (PSNR) compared to very deep super-resolution (VDSR) and enhanced deep super-resolution (EDSR) architectures.
ISSN:2076-3417