Physicochemical Characterization and In Vivo Evaluation of Amorphous and Partially Crystalline Calcium Phosphate Coatings Fabricated on Ti-6Al-4V Implants by the Plasma Spray Method

Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA) and amorphous calcium phosphate (ACP) surfaces were c...

Full description

Saved in:
Bibliographic Details
Main Authors: Estevam A. Bonfante, Lukasz Witek, Nick Tovar, Marcelo Suzuki, Charles Marin, Rodrigo Granato, Paulo G. Coelho
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Biomaterials
Online Access:http://dx.doi.org/10.1155/2012/603826
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA) and amorphous calcium phosphate (ACP) surfaces were characterized by scanning electron microscopy (SEM), interferometry (IFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Implants were placed in the radius epiphysis, and the right limb of dogs provided implants that remained for 6 weeks, and the left limb provided implants that remained 12 weeks in vivo. Thin sections were prepared for bone-to-implant contact (BIC) and bone-area-fraction occupancy (BAFO) measurements (evaluated by Friedman analysis 𝑃<0.05). Results. Significantly, higher Sa (𝑃<0.03) and Sq (𝑃<0.02) were observed for ACP relative to PSHA. Chemical analysis revealed significantly higher HA, calcium phosphate, and calcium pyrophosphate for the PSHA surface. BIC and BAFO measurements showed no differences between surfaces. Lamellar bone formation in close contact with implant surfaces and within the healing chambers was observed for both groups. Conclusion. Given topographical and chemical differences between PSHA and ACP surfaces, bone morphology and histomorphometric evaluated parameters showed that both surfaces were osseoconductive in plateau root form implants.
ISSN:1687-8787
1687-8795