Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems

By using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009),...

Full description

Saved in:
Bibliographic Details
Main Author: Z. Y. Peng
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/236413
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552516621959168
author Z. Y. Peng
author_facet Z. Y. Peng
author_sort Z. Y. Peng
collection DOAJ
description By using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009), Li et al. (2011)). Furthermore, two examples are given to illustrate the obtained result.
format Article
id doaj-art-90a7363b6e1e485ba85a4968fdc2b324
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-90a7363b6e1e485ba85a4968fdc2b3242025-02-03T05:58:26ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/236413236413Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium ProblemsZ. Y. Peng0School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaBy using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009), Li et al. (2011)). Furthermore, two examples are given to illustrate the obtained result.http://dx.doi.org/10.1155/2012/236413
spellingShingle Z. Y. Peng
Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
Abstract and Applied Analysis
title Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
title_full Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
title_fullStr Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
title_full_unstemmed Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
title_short Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
title_sort holder continuity of solutions to parametric generalized vector quasiequilibrium problems
url http://dx.doi.org/10.1155/2012/236413
work_keys_str_mv AT zypeng holdercontinuityofsolutionstoparametricgeneralizedvectorquasiequilibriumproblems