Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems
By using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009),...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/236413 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832552516621959168 |
---|---|
author | Z. Y. Peng |
author_facet | Z. Y. Peng |
author_sort | Z. Y. Peng |
collection | DOAJ |
description | By using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009), Li et al. (2011)). Furthermore, two examples are given to illustrate the obtained result. |
format | Article |
id | doaj-art-90a7363b6e1e485ba85a4968fdc2b324 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-90a7363b6e1e485ba85a4968fdc2b3242025-02-03T05:58:26ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/236413236413Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium ProblemsZ. Y. Peng0School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaBy using a linear scalarization method, we establish sufficient conditions for the Hölder continuity of the solution mappings to a parametric generalized vector quasiequilibrium problem with set-valued mappings. These results extend the recent ones in the recent literature, (e.g., Li et al. (2009), Li et al. (2011)). Furthermore, two examples are given to illustrate the obtained result.http://dx.doi.org/10.1155/2012/236413 |
spellingShingle | Z. Y. Peng Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems Abstract and Applied Analysis |
title | Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems |
title_full | Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems |
title_fullStr | Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems |
title_full_unstemmed | Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems |
title_short | Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems |
title_sort | holder continuity of solutions to parametric generalized vector quasiequilibrium problems |
url | http://dx.doi.org/10.1155/2012/236413 |
work_keys_str_mv | AT zypeng holdercontinuityofsolutionstoparametricgeneralizedvectorquasiequilibriumproblems |