Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces

Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(...

Full description

Saved in:
Bibliographic Details
Main Authors: C. E. Chidume, C. O. Chidume, N. Djitté, M. S. Minjibir
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/629468
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556689657692160
author C. E. Chidume
C. O. Chidume
N. Djitté
M. S. Minjibir
author_facet C. E. Chidume
C. O. Chidume
N. Djitté
M. S. Minjibir
author_sort C. E. Chidume
collection DOAJ
description Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(xn,Txn)=0 holds. Convergence theorems are also proved under appropriate additional conditions.
format Article
id doaj-art-9043df2a4a6549bf83a3aa8a40e0e970
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-9043df2a4a6549bf83a3aa8a40e0e9702025-02-03T05:44:39ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/629468629468Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert SpacesC. E. Chidume0C. O. Chidume1N. Djitté2M. S. Minjibir3Mathematics Institute, African University of Science and Technology, PMB 681, Garki, Abuja, NigeriaDepartment of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USAUniversité Gaston Berger, 234 Saint Louis, SenegalMathematics Institute, African University of Science and Technology, PMB 681, Garki, Abuja, NigeriaLet K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(xn,Txn)=0 holds. Convergence theorems are also proved under appropriate additional conditions.http://dx.doi.org/10.1155/2013/629468
spellingShingle C. E. Chidume
C. O. Chidume
N. Djitté
M. S. Minjibir
Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
Abstract and Applied Analysis
title Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
title_full Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
title_fullStr Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
title_full_unstemmed Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
title_short Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
title_sort convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in hilbert spaces
url http://dx.doi.org/10.1155/2013/629468
work_keys_str_mv AT cechidume convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces
AT cochidume convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces
AT ndjitte convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces
AT msminjibir convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces