Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/629468 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832556689657692160 |
---|---|
author | C. E. Chidume C. O. Chidume N. Djitté M. S. Minjibir |
author_facet | C. E. Chidume C. O. Chidume N. Djitté M. S. Minjibir |
author_sort | C. E. Chidume |
collection | DOAJ |
description | Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(xn,Txn)=0 holds. Convergence theorems are also proved under appropriate additional conditions. |
format | Article |
id | doaj-art-9043df2a4a6549bf83a3aa8a40e0e970 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-9043df2a4a6549bf83a3aa8a40e0e9702025-02-03T05:44:39ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/629468629468Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert SpacesC. E. Chidume0C. O. Chidume1N. Djitté2M. S. Minjibir3Mathematics Institute, African University of Science and Technology, PMB 681, Garki, Abuja, NigeriaDepartment of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USAUniversité Gaston Berger, 234 Saint Louis, SenegalMathematics Institute, African University of Science and Technology, PMB 681, Garki, Abuja, NigeriaLet K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(xn,Txn)=0 holds. Convergence theorems are also proved under appropriate additional conditions.http://dx.doi.org/10.1155/2013/629468 |
spellingShingle | C. E. Chidume C. O. Chidume N. Djitté M. S. Minjibir Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces Abstract and Applied Analysis |
title | Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces |
title_full | Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces |
title_fullStr | Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces |
title_full_unstemmed | Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces |
title_short | Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces |
title_sort | convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in hilbert spaces |
url | http://dx.doi.org/10.1155/2013/629468 |
work_keys_str_mv | AT cechidume convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces AT cochidume convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces AT ndjitte convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces AT msminjibir convergencetheoremsforfixedpointsofmultivaluedstrictlypseudocontractivemappingsinhilbertspaces |