A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels

A numerical methodology was proposed for the microstructure-based prediction of the non-uniaxial fatigue life using the fatigue life prediction model calibrated only by the uniaxial fatigue life data for 44MnSiVS6 hypo-eutectoid steel. The proposed prediction procedure involves the generation of a s...

Full description

Saved in:
Bibliographic Details
Main Authors: Jonghoon Shin, Hyunki Kim, Minwoo Kang, Chungan Lee, Seunghyun Hong, Yoon Suk Choi
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S223878542402920X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832595339009327104
author Jonghoon Shin
Hyunki Kim
Minwoo Kang
Chungan Lee
Seunghyun Hong
Yoon Suk Choi
author_facet Jonghoon Shin
Hyunki Kim
Minwoo Kang
Chungan Lee
Seunghyun Hong
Yoon Suk Choi
author_sort Jonghoon Shin
collection DOAJ
description A numerical methodology was proposed for the microstructure-based prediction of the non-uniaxial fatigue life using the fatigue life prediction model calibrated only by the uniaxial fatigue life data for 44MnSiVS6 hypo-eutectoid steel. The proposed prediction procedure involves the generation of a statistically representative synthetic microstructure, the development of slip system-based fatigue constitutive models for the primary ferrite and pearlite phases constituting the hypo-eutectoid steel, the synthetic microstructure-based finite element simulations for uniaxial, torsional, and in-phase and out-of-phase axial plus torsional fatigue loading conditions using the developed constitutive models, the extraction of the cyclic increment of the fatigue indicator parameters (ΔFIP) from fatigue-simulated microstructures for the local fatigue damage quantification, the calibration of the uniaxial fatigue life prediction model by linking simulated uniaxial ΔFIPs to the uniaxial fatigue life data, and finally the prediction of the non-uniaxial fatigue life (through simulated non-uniaxial ΔFIPs) using the uniaxial fatigue-calibrated life prediction model. Four different fatigue indicator parameters, Smith-Watson-Topper, Brown-Miller, Fatemi-Socie and Garud parameters, were adopted for the ΔFIP quantification, and their non-uniaxial fatigue life predictability was assessed. The fatigue life prediction model, calibrated only by the simulated uniaxial ΔFIPs and the uniaxial fatigue life data, showed the highest non-uniaxial fatigue life predictability, as high as R2 = 0.89, when using the Fatemi-Socie parameter for the quantification of ΔFIP. The spatial distribution of simulated Fatemi-Socie parameter-based ΔFIPs was confirmed to be consistent with the experimentally observed fatigue crack initiation behavior for the hypo-eutectoid steel for all fatigue loading conditions.
format Article
id doaj-art-90364f28fe9245baaeaeb562a813444b
institution Kabale University
issn 2238-7854
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Journal of Materials Research and Technology
spelling doaj-art-90364f28fe9245baaeaeb562a813444b2025-01-19T06:25:32ZengElsevierJournal of Materials Research and Technology2238-78542025-01-0134785796A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steelsJonghoon Shin0Hyunki Kim1Minwoo Kang2Chungan Lee3Seunghyun Hong4Yoon Suk Choi5School of Materials Science and Engineering, Pusan National University, Busan, 46241, South KoreaMaterials Research & Engineering Center, Hyundai Motor Group, Hwaseong, 18270, South KoreaMaterials Research & Engineering Center, Hyundai Motor Group, Hwaseong, 18270, South KoreaMaterials Research & Engineering Center, Hyundai Motor Group, Hwaseong, 18270, South KoreaMaterials Research & Engineering Center, Hyundai Motor Group, Hwaseong, 18270, South KoreaSchool of Materials Science and Engineering, Pusan National University, Busan, 46241, South Korea; Corresponding author.A numerical methodology was proposed for the microstructure-based prediction of the non-uniaxial fatigue life using the fatigue life prediction model calibrated only by the uniaxial fatigue life data for 44MnSiVS6 hypo-eutectoid steel. The proposed prediction procedure involves the generation of a statistically representative synthetic microstructure, the development of slip system-based fatigue constitutive models for the primary ferrite and pearlite phases constituting the hypo-eutectoid steel, the synthetic microstructure-based finite element simulations for uniaxial, torsional, and in-phase and out-of-phase axial plus torsional fatigue loading conditions using the developed constitutive models, the extraction of the cyclic increment of the fatigue indicator parameters (ΔFIP) from fatigue-simulated microstructures for the local fatigue damage quantification, the calibration of the uniaxial fatigue life prediction model by linking simulated uniaxial ΔFIPs to the uniaxial fatigue life data, and finally the prediction of the non-uniaxial fatigue life (through simulated non-uniaxial ΔFIPs) using the uniaxial fatigue-calibrated life prediction model. Four different fatigue indicator parameters, Smith-Watson-Topper, Brown-Miller, Fatemi-Socie and Garud parameters, were adopted for the ΔFIP quantification, and their non-uniaxial fatigue life predictability was assessed. The fatigue life prediction model, calibrated only by the simulated uniaxial ΔFIPs and the uniaxial fatigue life data, showed the highest non-uniaxial fatigue life predictability, as high as R2 = 0.89, when using the Fatemi-Socie parameter for the quantification of ΔFIP. The spatial distribution of simulated Fatemi-Socie parameter-based ΔFIPs was confirmed to be consistent with the experimentally observed fatigue crack initiation behavior for the hypo-eutectoid steel for all fatigue loading conditions.http://www.sciencedirect.com/science/article/pii/S223878542402920XHypo-eutectoid steelFatigue life predictionNon-uniaxial fatigue lifeCrystal plasticity finite element methodFatigue indicator parameter
spellingShingle Jonghoon Shin
Hyunki Kim
Minwoo Kang
Chungan Lee
Seunghyun Hong
Yoon Suk Choi
A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
Journal of Materials Research and Technology
Hypo-eutectoid steel
Fatigue life prediction
Non-uniaxial fatigue life
Crystal plasticity finite element method
Fatigue indicator parameter
title A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
title_full A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
title_fullStr A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
title_full_unstemmed A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
title_short A microstructure-based numerical approach for uniaxial fatigue life-based non-uniaxial fatigue life prediction of hypo-eutectoid steels
title_sort microstructure based numerical approach for uniaxial fatigue life based non uniaxial fatigue life prediction of hypo eutectoid steels
topic Hypo-eutectoid steel
Fatigue life prediction
Non-uniaxial fatigue life
Crystal plasticity finite element method
Fatigue indicator parameter
url http://www.sciencedirect.com/science/article/pii/S223878542402920X
work_keys_str_mv AT jonghoonshin amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT hyunkikim amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT minwookang amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT chunganlee amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT seunghyunhong amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT yoonsukchoi amicrostructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT jonghoonshin microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT hyunkikim microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT minwookang microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT chunganlee microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT seunghyunhong microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels
AT yoonsukchoi microstructurebasednumericalapproachforuniaxialfatiguelifebasednonuniaxialfatiguelifepredictionofhypoeutectoidsteels