Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar

Human activity recognition (HAR) technology is related to human safety and convenience, making it crucial for it to infer human activity accurately. Furthermore, it must consume low power at all times when detecting human activity and be inexpensive to operate. For this purpose, a low-power and ligh...

Full description

Saved in:
Bibliographic Details
Main Authors: Seungchan Lim, Chaewoon Park, Seongjoo Lee, Yunho Jung
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/22/10764
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human activity recognition (HAR) technology is related to human safety and convenience, making it crucial for it to infer human activity accurately. Furthermore, it must consume low power at all times when detecting human activity and be inexpensive to operate. For this purpose, a low-power and lightweight design of the HAR system is essential. In this paper, we propose a low-power and lightweight HAR system using point-cloud data collected by radar. The proposed HAR system uses a pillar feature encoder that converts 3D point-cloud data into a 2D image and a classification network based on depth-wise separable convolution for lightweighting. The proposed classification network achieved an accuracy of 95.54%, with 25.77 M multiply–accumulate operations and 22.28 K network parameters implemented in a 32 bit floating-point format. This network achieved 94.79% accuracy with 4 bit quantization, which reduced memory usage to 12.5% compared to existing 32 bit format networks. In addition, we implemented a lightweight HAR system optimized for low-power design on a heterogeneous computing platform, a Zynq UltraScale+ ZCU104 device, through hardware–software implementation. It took 2.43 ms of execution time to perform one frame of HAR on the device and the system consumed 3.479 W of power when running.
ISSN:2076-3417