Explainable AI and Fuzzy Linguistic Interpretation for Enhanced Transparency in Public Procurement: Analyzing EU Tender Awards
Despite the ideal of a unified Single Market, a powerful “home bias” pervades EU public procurement, hinting at unseen barriers that conventional analysis fails to capture. This study introduces an interpretable AI framework to investigate these dynamics, pairing a LightGBM model with SHapley Additi...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/13/2215 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Despite the ideal of a unified Single Market, a powerful “home bias” pervades EU public procurement, hinting at unseen barriers that conventional analysis fails to capture. This study introduces an interpretable AI framework to investigate these dynamics, pairing a LightGBM model with SHapley Additive exPlanations (SHAP) to examine the vast Tenders Electronic Daily (TED) database (2018–2023). Concretely, we propose a fuzzy linguistic layer that translates SHAP’s complex quantitative outputs into intuitive, human-readable terms. Our model effectively distinguishes local from non-local awards (AUC ≈ 0.855), revealing that while high-value contracts expectedly attract broader competition, the most potent predictors are a country’s own history of local awards and structural factors like the buyer’s type and location. This points not to isolated incidents, but, rather, to deep-seated patterns shaping market fairness. Our combined XAI-Fuzzy approach offers a new instrument for transparent governance, enabling policymakers to diagnose market realities and forge a more genuinely open and equitable European public square. |
|---|---|
| ISSN: | 2227-7390 |