Explainable AI and Fuzzy Linguistic Interpretation for Enhanced Transparency in Public Procurement: Analyzing EU Tender Awards

Despite the ideal of a unified Single Market, a powerful “home bias” pervades EU public procurement, hinting at unseen barriers that conventional analysis fails to capture. This study introduces an interpretable AI framework to investigate these dynamics, pairing a LightGBM model with SHapley Additi...

Full description

Saved in:
Bibliographic Details
Main Authors: Cosmin Cernăzanu-Glăvan, Andrei-Ștefan Bulzan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2215
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the ideal of a unified Single Market, a powerful “home bias” pervades EU public procurement, hinting at unseen barriers that conventional analysis fails to capture. This study introduces an interpretable AI framework to investigate these dynamics, pairing a LightGBM model with SHapley Additive exPlanations (SHAP) to examine the vast Tenders Electronic Daily (TED) database (2018–2023). Concretely, we propose a fuzzy linguistic layer that translates SHAP’s complex quantitative outputs into intuitive, human-readable terms. Our model effectively distinguishes local from non-local awards (AUC ≈ 0.855), revealing that while high-value contracts expectedly attract broader competition, the most potent predictors are a country’s own history of local awards and structural factors like the buyer’s type and location. This points not to isolated incidents, but, rather, to deep-seated patterns shaping market fairness. Our combined XAI-Fuzzy approach offers a new instrument for transparent governance, enabling policymakers to diagnose market realities and forge a more genuinely open and equitable European public square.
ISSN:2227-7390