Antibody Mediated Transduction of Therapeutic Proteins into Living Cells
Protein therapy refers to the direct delivery of therapeutic proteins to cells and tissues with the goal of ameliorating or modifying a disease process. Current techniques for delivering proteins across cell membranes include taking advantage of receptor-mediated endocytosis or using protein transdu...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1100/tsw.2005.98 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein therapy refers to the direct delivery of therapeutic proteins to cells and tissues with the goal of ameliorating or modifying a disease process. Current techniques for delivering proteins across cell membranes include taking advantage of receptor-mediated endocytosis or using protein transduction domains that penetrate directly into cells. The most commonly used protein transduction domains are small cell-penetrating peptides derived from such proteins as the HIV-1 Tat protein. A novel protein transduction domain developed as the single chain fragment (Fv) of a murine anti-DNA autoantibody, mAb 3E10, has recently been developed and used to deliver biologically active proteins to living cells in vitro. This review will provide a brief overview of the development of the Fv fragment and provide a summary of recent studies using Fv to deliver therapeutic peptides and proteins (such as a C-terminal p53 peptide, C-terminal p53 antibody fragment, full-length p53, and micro-dystrophin) to cells. |
---|---|
ISSN: | 1537-744X |