Rapid Identification of Drug-Resistant Tuberculosis Genes Using Direct PCR Amplification and Oxford Nanopore Technology Sequencing

Mycobacterium tuberculosis antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has p...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaishun Zhao, Chunlin Tu, Wei Chen, Haiying Liang, Wenjing Zhang, Yilei Wang, Ye Jin, Jianrong Hu, Yameng Sun, Jun Xu, Yanfang Yu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Canadian Journal of Infectious Diseases and Medical Microbiology
Online Access:http://dx.doi.org/10.1155/2022/7588033
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycobacterium tuberculosis antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has proven to be a powerful strategy for identifying relevant drug resistance information. This study established a sequencing method and bioinformatics pipeline for resistance gene analysis using an Oxford Nanopore Technologies sequencer. The pipeline was validated by Sanger sequencing and exhibited 100% concordance with the identified variants. Turnaround time for the nanopore sequencing workflow was approximately 12 h, facilitating drug resistance prediction several weeks earlier than that of traditional phenotype drug susceptibility testing. This study produced a customized gene panel assay for rapid bacterial identification via nanopore sequencing, which improves the timeliness of tuberculosis diagnoses and provides a reliable method that may have clinical application.
ISSN:1918-1493