Equivariant geometry of singular cubic threefolds
We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2025-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832589923580903424 |
---|---|
author | Ivan Cheltsov Yuri Tschinkel Zhijia Zhang |
author_facet | Ivan Cheltsov Yuri Tschinkel Zhijia Zhang |
author_sort | Ivan Cheltsov |
collection | DOAJ |
description | We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program. |
format | Article |
id | doaj-art-8f690db8623f45cbb0bd1ba29aeb3af8 |
institution | Kabale University |
issn | 2050-5094 |
language | English |
publishDate | 2025-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Forum of Mathematics, Sigma |
spelling | doaj-art-8f690db8623f45cbb0bd1ba29aeb3af82025-01-24T05:20:18ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.148Equivariant geometry of singular cubic threefoldsIvan Cheltsov0https://orcid.org/0000-0002-6820-8073Yuri Tschinkel1https://orcid.org/0000-0002-8310-7107Zhijia Zhang2https://orcid.org/0009-0006-3826-5006Department of Mathematics, University of Edinburgh, UK;Courant Institute, 251 Mercer Street, New York, NY, 10012, USA; E-mail: Simons Foundation, 160 Fifth Avenue, New York, NY, 10010, USACourant Institute, 251 Mercer Street, New York, NY, 10012, USA; E-mail:We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article14E0714E30 |
spellingShingle | Ivan Cheltsov Yuri Tschinkel Zhijia Zhang Equivariant geometry of singular cubic threefolds Forum of Mathematics, Sigma 14E07 14E30 |
title | Equivariant geometry of singular cubic threefolds |
title_full | Equivariant geometry of singular cubic threefolds |
title_fullStr | Equivariant geometry of singular cubic threefolds |
title_full_unstemmed | Equivariant geometry of singular cubic threefolds |
title_short | Equivariant geometry of singular cubic threefolds |
title_sort | equivariant geometry of singular cubic threefolds |
topic | 14E07 14E30 |
url | https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article |
work_keys_str_mv | AT ivancheltsov equivariantgeometryofsingularcubicthreefolds AT yuritschinkel equivariantgeometryofsingularcubicthreefolds AT zhijiazhang equivariantgeometryofsingularcubicthreefolds |