Equivariant geometry of singular cubic threefolds

We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.

Saved in:
Bibliographic Details
Main Authors: Ivan Cheltsov, Yuri Tschinkel, Zhijia Zhang
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589923580903424
author Ivan Cheltsov
Yuri Tschinkel
Zhijia Zhang
author_facet Ivan Cheltsov
Yuri Tschinkel
Zhijia Zhang
author_sort Ivan Cheltsov
collection DOAJ
description We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.
format Article
id doaj-art-8f690db8623f45cbb0bd1ba29aeb3af8
institution Kabale University
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-8f690db8623f45cbb0bd1ba29aeb3af82025-01-24T05:20:18ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.148Equivariant geometry of singular cubic threefoldsIvan Cheltsov0https://orcid.org/0000-0002-6820-8073Yuri Tschinkel1https://orcid.org/0000-0002-8310-7107Zhijia Zhang2https://orcid.org/0009-0006-3826-5006Department of Mathematics, University of Edinburgh, UK;Courant Institute, 251 Mercer Street, New York, NY, 10012, USA; E-mail: Simons Foundation, 160 Fifth Avenue, New York, NY, 10010, USACourant Institute, 251 Mercer Street, New York, NY, 10012, USA; E-mail:We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools, intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article14E0714E30
spellingShingle Ivan Cheltsov
Yuri Tschinkel
Zhijia Zhang
Equivariant geometry of singular cubic threefolds
Forum of Mathematics, Sigma
14E07
14E30
title Equivariant geometry of singular cubic threefolds
title_full Equivariant geometry of singular cubic threefolds
title_fullStr Equivariant geometry of singular cubic threefolds
title_full_unstemmed Equivariant geometry of singular cubic threefolds
title_short Equivariant geometry of singular cubic threefolds
title_sort equivariant geometry of singular cubic threefolds
topic 14E07
14E30
url https://www.cambridge.org/core/product/identifier/S2050509424001488/type/journal_article
work_keys_str_mv AT ivancheltsov equivariantgeometryofsingularcubicthreefolds
AT yuritschinkel equivariantgeometryofsingularcubicthreefolds
AT zhijiazhang equivariantgeometryofsingularcubicthreefolds