Schrödinger equations in noncylindrical domains: exact controllability

We consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we i...

Full description

Saved in:
Bibliographic Details
Main Authors: G. O. Antunes, M. D. G. da Silva, R. F. Apolaya
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/78192
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560608751386624
author G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
author_facet G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
author_sort G. O. Antunes
collection DOAJ
description We consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we investigate the boundary exact controllability for the linear Schrödinger equation u′−iΔu=f in Q^(i2=−1), u=w on Σ^, u(x,0)=u0(x) in Ω0, where w is the control.
format Article
id doaj-art-8f5c6db10da44ad5aeccf12128de53df
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-8f5c6db10da44ad5aeccf12128de53df2025-02-03T01:27:13ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/7819278192Schrödinger equations in noncylindrical domains: exact controllabilityG. O. Antunes0M. D. G. da Silva1R. F. Apolaya2Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, BrazilInstituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, BrazilInstituto de Matemática, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Niterói, BrazilWe consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we investigate the boundary exact controllability for the linear Schrödinger equation u′−iΔu=f in Q^(i2=−1), u=w on Σ^, u(x,0)=u0(x) in Ω0, where w is the control.http://dx.doi.org/10.1155/IJMMS/2006/78192
spellingShingle G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
Schrödinger equations in noncylindrical domains: exact controllability
International Journal of Mathematics and Mathematical Sciences
title Schrödinger equations in noncylindrical domains: exact controllability
title_full Schrödinger equations in noncylindrical domains: exact controllability
title_fullStr Schrödinger equations in noncylindrical domains: exact controllability
title_full_unstemmed Schrödinger equations in noncylindrical domains: exact controllability
title_short Schrödinger equations in noncylindrical domains: exact controllability
title_sort schrodinger equations in noncylindrical domains exact controllability
url http://dx.doi.org/10.1155/IJMMS/2006/78192
work_keys_str_mv AT goantunes schrodingerequationsinnoncylindricaldomainsexactcontrollability
AT mdgdasilva schrodingerequationsinnoncylindricaldomainsexactcontrollability
AT rfapolaya schrodingerequationsinnoncylindricaldomainsexactcontrollability