Is there a polynomial D(2X + 1)-quadruple?

In this paper, we show that there does not exist a polynomial D(2X+ 1)-quadruple {a, b, c, d}, such that 0 < a < b < c < d and deg d = deg b.

Saved in:
Bibliographic Details
Main Authors: Franušić Zrinka, Jurasić Ana
Format: Article
Language:English
Published: Sciendo 2025-06-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2025-0019
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we show that there does not exist a polynomial D(2X+ 1)-quadruple {a, b, c, d}, such that 0 < a < b < c < d and deg d = deg b.
ISSN:1844-0835