Antimicrobial activity of Chitosan-silver nanoparticles made from jewelry industry silver waste

Local management of bacterial infections is challenging. The antimicrobial effect of silver has long been recognized, but its use is limited due to its expensive nature and reduced applicability in liquids. This study aimed to synthesize chitosan-silver nanoparticles (CS-AgNPs) from reusable silver...

Full description

Saved in:
Bibliographic Details
Main Authors: Perdana Muhammad Iqbal, Kusuma Ikhwan Yuda, Dwandaru Wipsar Sunu Brams, Yulianti Evy, Tóth Barbara, Csupor Dezső, Takó Miklós, Vágvölgyi Csaba
Format: Article
Language:English
Published: University of Belgrade, University of Novi Sad 2024-01-01
Series:Archives of Biological Sciences
Subjects:
Online Access:https://doiserbia.nb.rs/img/doi/0354-4664/2024/0354-46642400034P.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Local management of bacterial infections is challenging. The antimicrobial effect of silver has long been recognized, but its use is limited due to its expensive nature and reduced applicability in liquids. This study aimed to synthesize chitosan-silver nanoparticles (CS-AgNPs) from reusable silver waste of the jewelry industry and investigate their antimicrobial properties against pathogenic microorganisms. X-Ray diffraction (XRD) analysis was used to confirm the crystalline structure of the recycled silver, with a strong diffraction peak observed at 2θ=38.60°. Agar disk diffusion showed inhibitory effects for CS-AgNPs on the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans that depended on the concentration of AgNO3 solution used for preparation. In these tests, S. aureus was more susceptible to the treatment than E. coli and C. albicans. The CS-AgNP inhibited the growth of tested microorganisms with minimum inhibitory concentration (MIC50) values between 1.7 and 4.25 mg/mL. These findings highlight the potential of CS-AgNPs as effective antimicrobial agents. The use of waste materials in nanoparticle synthesis in this research offers a promising approach for sustainable and eco-friendly nanotechnology.
ISSN:0354-4664
1821-4339