A Comparative Study on the Calculation Methods of Nonlinear Springing of Large Containerships

The vibration of large containerships induced by waves and its resulting fatigue damage have long been the focus of research in the field of ocean engineering. For low-frequency nonlinear wave-induced springing, potential flow and viscous flow remain the two significant calculation methods. Based on...

Full description

Saved in:
Bibliographic Details
Main Authors: Ye Lu, Liye Li, Qiu Jin
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/7/1226
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vibration of large containerships induced by waves and its resulting fatigue damage have long been the focus of research in the field of ocean engineering. For low-frequency nonlinear wave-induced springing, potential flow and viscous flow remain the two significant calculation methods. Based on potential flow theory, this study investigates the nonlinear wave-induced vibration response of large containerships, including the superposition of sum and difference frequencies, by considering the influence of second-order hydrodynamic forces. Meanwhile, a three-dimensional numerical wave basin model is established to simulate fluid–structure interaction, integrating structural mode superposition for two-way CFD (Computational Fluid Dynamics)-FEM (Finite Element Method) coupling. By comparing with the experimental results, it is found that the frequency-domain nonlinear method considering second-order hydrodynamic forces and the CFD-FEM method can both effectively capture the nonlinear wave-induced vibration phenomenon under regular wave conditions. The numerical simulation results of the two methods are close to the experimental results. Moreover, the frequency-domain nonlinear method has a fast calculation speed, making it more suitable for the preliminary design of large ships.
ISSN:2077-1312