Optimizing hypoglycaemia prediction in type 1 diabetes with Ensemble Machine Learning modeling

Abstract Background Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose monitoring, and lifestyle adjustments. The accurate prediction of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Daphne N. Katsarou, Eleni I. Georga, Maria A. Christou, Panagiota A. Christou, Stelios Tigas, Costas Papaloukas, Dimitrios I. Fotiadis
Format: Article
Language:English
Published: BMC 2025-01-01
Series:BMC Medical Informatics and Decision Making
Subjects:
Online Access:https://doi.org/10.1186/s12911-025-02867-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose monitoring, and lifestyle adjustments. The accurate prediction of the short-term course of glucose levels in the subcutaneous space in T1D people, as measured by a continuous glucose monitoring (CGM) system, is essential for improving glucose control by avoiding harmful hypoglycaemic and hyperglycaemic glucose swings, facilitating precise insulin management and individualized care and, in turn, minimizing long-term vascular complications. Methods In this study, we propose an ensemble univariate short-term predictive model of the subcutaneous glucose concentration in T1D targeting at improving its error in the hypoglycaemic region. As such, the underlying basis functions are selected to minimize the percentage of erroneous predictions (EP) in the hypoglycaemic region, with EP being evaluated with continuous glucose error grid analysis (CG-EGA). The dataset comprises 29 individuals with T1D, who were monitored for 2 to 4 weeks during the GlucoseML prospective observational clinical study. Results Among six different basis models (i.e., linear regression (LR), automatic relevance determination (ARD), support vector regression (SVR), Gaussian process regression (GPR), eXtreme gradient boosting (XGBoost), and long short-term memory (LSTM)), XGBoost and SVR showed a dominant performance in the hypoglycaemic region and were selected as the constituent basis models of the ensemble model. The results indicate that the ensemble model significantly reduces the percentage of EP in the hypoglycaemic region for a 30 min prediction horizon to 19% as compared with its individual basis models (i.e., XGBoost and SVR), whilst its errors over the entire glucose range (hypoglycaemia, euglycaemia, and hyperglycaemia) are similar to those of the basis models. Conclusions The consideration of the performance of the basis functions in the hypoglycaemic region during the construction of the ensemble model contributes to enhancing their joint performance in that specific area. This could lead to more precise insulin management and a reduced risk of short-term hypoglycaemic fluctuations.
ISSN:1472-6947