Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications

Wettability-functional surfaces are crucial in both theoretical investigation and engineering applications. Compared to traditional micro/nano fabrication methods (such as ion etching, sol–gel, chemical vapor deposition, template techniques, and self-assembly), femtosecond laser processing has uniqu...

Full description

Saved in:
Bibliographic Details
Main Authors: Zelin Chen, Jiantao Zhou, Wenyang Cen, Yinzhou Yan, Wei Guo
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/8/573
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wettability-functional surfaces are crucial in both theoretical investigation and engineering applications. Compared to traditional micro/nano fabrication methods (such as ion etching, sol–gel, chemical vapor deposition, template techniques, and self-assembly), femtosecond laser processing has unique advantages, such as unmatched precision, flexible controllability, and material adaptability, widely used for the fabrication of wettability-functional surfaces. This paper systematically discusses the principle and advancement of femtosecond laser micro/nano processing in regulating surface wettability and analyzes the laser modulation mechanisms and structural design strategies for wettability-functional surfaces on various materials. Additionally, this paper reviews the practical applications of femtosecond laser-based wettability-functional surfaces in environmental engineering, aerospace, and biomedical fields, while highlighting the challenges and future directions for femtosecond laser processing of wettability-functional surfaces.
ISSN:2079-4991