Chimera State in the Network of Fractional-Order FitzHugh–Nagumo Neurons
The fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In this paper, the behaviors of the coupled fractional-orde...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/2437737 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In this paper, the behaviors of the coupled fractional-order FitzHugh–Nagumo neurons are investigated. The effects of the coupling strength and the derivative order are under consideration. It is revealed that the level of the synchronization is decreased by decreasing the derivative order, and the chimera state emerges for stronger couplings. Furthermore, the patterns of the formed chimeras rely on the order of the derivatives. |
---|---|
ISSN: | 1076-2787 1099-0526 |