Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images

Early detection of diabetic retinopathy is critical for preserving vision in diabetic patients. The classification of lesions in Retinal fundus images, particularly macular edema, is an essential diagnostic tool, yet it presents a significant learning curve for both novice and experienced ophthalmol...

Full description

Saved in:
Bibliographic Details
Main Authors: Rafael A. García-Ramírez, Ivan Cruz-Aceves, Arturo Hernández-Aguirre, Gloria P. Trujillo-Sánchez, Martha A. Hernandez-González
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/4/123
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early detection of diabetic retinopathy is critical for preserving vision in diabetic patients. The classification of lesions in Retinal fundus images, particularly macular edema, is an essential diagnostic tool, yet it presents a significant learning curve for both novice and experienced ophthalmologists. To address this challenge, a novel Convolutional Deep Belief Network (CDBN) is proposed to classify image patches into three distinct categories: two types of macular edema—microhemorrhages and hard exudates—and a healthy category. The method leverages high-level feature extraction to mitigate issues arising from the high similarity of low-level features in noisy images. Additionally, a Real-Coded Genetic Algorithm optimizes the parameters of Gabor filters and the network, ensuring optimal feature extraction and classification performance. Experimental results demonstrate that the proposed CDBN outperforms comparative models, achieving an F1 score of 0.9258. These results indicate that the architecture effectively overcomes the challenges of lesion classification in retinal images, offering a robust tool for clinical application and paving the way for advanced clinical decision support systems in diabetic retinopathy management.
ISSN:2313-433X