The Sub-Riemannian Limit of Curvatures for Curves and Surfaces and a Gauss-Bonnet Theorem in the Group of Rigid Motions of Minkowski Plane with General Left-Invariant Metric
The group of rigid motions of the Minkowski plane with a general left-invariant metric is denoted by E1,1,gλ1,λ2, where λ1≥λ2>0. It provides a natural 2-parametric deformation family of the Riemannian homogeneous manifold Sol3=E1,1,g1,1 which is the model space to solve geometry in the eight mode...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2021/1431082 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The group of rigid motions of the Minkowski plane with a general left-invariant metric is denoted by E1,1,gλ1,λ2, where λ1≥λ2>0. It provides a natural 2-parametric deformation family of the Riemannian homogeneous manifold Sol3=E1,1,g1,1 which is the model space to solve geometry in the eight model geometries of Thurston. In this paper, we compute the sub-Riemannian limits of the Gaussian curvature for a Euclidean C2-smooth surface in E1,1,gLλ1,λ2 away from characteristic points and signed geodesic curvature for the Euclidean C2-smooth curves on surfaces. Based on these results, we get a Gauss-Bonnet theorem in the group of rigid motions of the Minkowski plane with a general left-invariant metric. |
---|---|
ISSN: | 2314-8896 2314-8888 |