A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements

Numerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines as both weight and interpolation functions are set up. It is shown that this method is capable of solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three standa...

Full description

Saved in:
Bibliographic Details
Main Author: A. A. Soliman
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/527467
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548688815194112
author A. A. Soliman
author_facet A. A. Soliman
author_sort A. A. Soliman
collection DOAJ
description Numerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines as both weight and interpolation functions are set up. It is shown that this method is capable of solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three standard problems are used to validate the proposed algorithm. A linear stability analysis shows that a numerical scheme based on a Cranck-Nicolson approximation in time is unconditionally stable.
format Article
id doaj-art-8cc1fbe61a8c4734ac734f5d641bb475
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-8cc1fbe61a8c4734ac734f5d641bb4752025-02-03T06:13:26ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/527467527467A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite ElementsA. A. Soliman0Department of Mathematics, Faculty of Education, Suez Canal University, Al-Arish 45111, EgyptNumerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines as both weight and interpolation functions are set up. It is shown that this method is capable of solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three standard problems are used to validate the proposed algorithm. A linear stability analysis shows that a numerical scheme based on a Cranck-Nicolson approximation in time is unconditionally stable.http://dx.doi.org/10.1155/2012/527467
spellingShingle A. A. Soliman
A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
Abstract and Applied Analysis
title A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
title_full A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
title_fullStr A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
title_full_unstemmed A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
title_short A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
title_sort galerkin solution for burgers equation using cubic b spline finite elements
url http://dx.doi.org/10.1155/2012/527467
work_keys_str_mv AT aasoliman agalerkinsolutionforburgersequationusingcubicbsplinefiniteelements
AT aasoliman galerkinsolutionforburgersequationusingcubicbsplinefiniteelements